JCU ePrints

This file is part of the following reference:

Welton, Ronelle Ellen (2005) Proteomic and genomic characterisation of venom proteins from Oxyuranus species. PhD thesis, James Cook University

Access to this file is available from:

http://eprints.jcu.edu.au/11938

References

- Afifyan F, Armugam A, Tan P, Tan NH, Gopalakrishnakone P, Jeyaseelan K. (1998) Four new post-synaptic neurotoxins from *Naja naja sputatrix* venom: cDNA cloning, protein expression, and phylogenetic analysis. *Toxicon* 36(12): 1871-1885.
- Afifyan F, Armugam A, Tan C, Gopalakrishnakone P, Jeyaseelan K. (1999) Postsynaptic alpha-neurotoxin gene of the spitting cobra, *Naja naja sputatrix*: structure, organization, and phylogenetic analysis. *Gen Res* 9 (3): 259-266.
- Alape-Girón A, Persson B, Cederlund E, Flores Diaz M, Gutierrez JM,
 Thelestam M, Bergman T, Jornvall H. (1999) Elapid venom toxins: multiple
 recruitments of ancient scaffolds. *Eur J Biochem* 259(1-2): 225-234.
- Altschul SF, Maden TL, Schaffer TL, Zhang A, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
- Armugam A, Gong N, Li X, Siew PY, Chai SC, Nair R, Jeyaseelan K. (2004) Group IB phospholipase A2 from *Pseudonaja textilis*. Arch Biochem Biophys 421(1): 10-20.
- Arni R K, Ward R J. (1996) Phospholipase A2 -Structural Review. Toxicon 34 (8): 827-841
- Arriagada E, Cid H. (1989) Search for a "toxic site" in snake venom phospholipases A2. Arch Biol Med Exp 22(2): 97-105.
- Assakura MT, Furtado MF, Mandelbaum FR. (1992) Biochemical and biological differentiation of the venoms of the Lance-headed vipers. *Comp Biochem Physiol* 102B: 727-732.
- Assakura MT, Silva CA, Mentele R, Camargo AC, Serrano SM. (2003) Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of *Bothrops jararaca*. *Toxicon* 41(2): 217-227.
- Atassi M Z. (1995) Post-synaptic-neurotoxin–acetylcholine receptor interaction and the binding sites on the two molecules. In Handbook of Natural Toxins 5: Reptile Venoms and Toxins. A. Tu. New York, Marcel Dekker Inc: 53–83.
- Audley-Charles MG. (1987) Dispersal of Gondwanaland; relevance to evolution of the angiosperms. Biographical Evolution of the Malay Archipelago. T. C. Whitmore. Oxford, Clarendon Press: 5-25.
- Bailey GS. (1998) Enzymes from Snake Venom. Fort Collins, Alaken.
- Baker SF, Othman R, Wilton DC. (1998) Tryptophan-containing mutant of human (group IIA) secreted phospholipase A2 has a dramatically increased ability to hydrolyse phosphatidylcholine vesicles and cell membranes. *Biochemistry* 37: 13203-13211.
- Balass M, Katchalski-Katzir E, Fuchs S. (1997) The alpha-bungarotoxin binding site on the nicotinic acetylcholine receptor; Analysis using a phage-epitope library. *Proc Natl Acad Sci USA* 94: 6054-6058.
- Barbour KWG, Richard L, Guillonneau F, Wang Y, Baumann H, Franklin G. (2002) Functional Diversification during Evolution of the Murine a1-Proteinase Inhibitor Family: Role of the Hyper variable Reactive Centre Loop. *Mol Biol Evol* 19(5): 718-727.

- Barrett R, Little M. (2003) Five years of snake envenoming in far north Queensland. Emerg Med 15(5-6): 500-510.
- Barrington PL, Soons KR, Rosenberg P. (1986) Cardiotoxicity of *Naja nigricollis* phospholipase A2 is not due to alterations in prostaglandin synthesis. *Toxicon* 24(11-12): 1107-1116.
- Barrio A, Miranda ME. (1966) Different population of *Bothrops alternata dumeril* and *Bibron* (Ophidia, Crotalidae of Argentina considered from the morphological and antigenical point of view. *Memorias Do Instituto Butantan* 33(3): 887-892.
- Beiboer SHW, Franken PA, Cox RC, Verheij HM. (1995) An extended binding pocket determines the polar head group specificity of porcine pancreatic phospholipse A2. *Eur J Biochem* 231: 747-753
- Belghazi MB, Grandier-Vazeille X, Manon S, Schmitter J. (2001) Analysis of protein sequences and protein complexes by matrix assisted laser desorption/ionisation mass spectrometry. *Proteomics* 1: 946-954.
- Bell, WR, Pitney WR, Oakley CM, Goodwin JF. (1968b) Therapeutic defibrination in the treatment of thrombotic disease. *Lancet* pp 490-493
- Bell KL, Sutherland SK, Hodgson WC. (1998) Some pharmacological studies of venom from the inland taipan (*Oxyuranus microlepidotus*) *Toxicon* 36(1): 63-74.
- Bell KL, Kemp BK, McPherson GA, Hodgson WC. (1999) The smooth muscle relaxant effects of venom from the inland taipan (*Oxyuranus microlepidotus*) Toxicon 37(1): 229-231.
- Berg B, Ellis RJ, Dobson CM. (1999) Effects of macromolecular crowding on protein folding and aggregation. *EMBO J* 18(24): 6927-6933.
- Betzel C, Genov N, Rajashankar KR, Singh TP. (1999) Modulation of phospholipase A2 activity generated by molecular evolution. *Cell Mol Life Sci* 56(5-6): 384-397.
- Blomback M, Egberg N, Johansson SA, Honsson H, Nilsson SEG, Blomback B. (1971) Treatment of thrombotic disorders with Reptilase *Thromb. Diath. Haemorrh* 45 (suppl): 41-61
- Bon C, Changeux JP, Jeng TW, Fraenkel Conrat H. (1979) Post-synaptic effects of crotoxin and of its isolated subunits. *Eur J Biochem* 99(3): 471-481.
- Bon C, Radvanyi, F, Saliou B, Faure G. (1986) Crotoxin: a biochemical analysis of its mode of action. J. toxicol. toxin Rev. 5: 125-138
- Bowersox SS, Gadbois T, Singh T, Pettus M, Wang YX, Luther RR. (1996) Selective N-type neuronal voltage sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Therapeutics 279: 1243-1249.
- Bradford MM. (1976) The Bradford Assay. Anal Biochem 72: 248.
- Broad AJ, Sutherland SK, Coulter AR. (1979) The lethality in mice of dangerous Australian and other snake venom. *Toxicon* 17(6): 661-664.
- Brown AM, Yatani A, Lacerda, AE, Gurrola GB, Possani LD. (1987) Neurotoxins that act selectively on voltage-dependent cardiac calcium channels. *Circ Res* 61(4 Pt 2): I 6-9.
- Brunie S, Bolin J, Gweirth D, Sigler PB. (1985) The refined crystal structure of dimeric phospholipase a2 at 2.6A. Access to a shielded catalytic center. J. Biol. Chem 260: 9742-9749
- Burnett WN. (1981) "Western Blotting"; Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and

radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112; 195

- Butt A D, Matthew D, Smith GJ, Young JA, Gaskell SJO, Stephen G, Bynon RJ. (2001) Chromatographic separations as a prelude to two dimensional electrophoresis in proteomics analysis. *Proteomics* 1: 42-53.
- Camargo CM, Ferreira LAF, Serano SMT, Hayashi MAF. (2000) The *Bothrops jararaca* venom and the cardiovascular function. *Toxicon* 39: 494-495.
- Chahinian HSB, Carriere, The C-terminal domain of pancreatic lipase: Functional and structural analogies with C2 Domains. Marseille, Laboratoire de Lipolyse Enzymatique du CNRS UPR.
- Chang CC, Lee JD, Eaker D, Fohlman J. (1977) Short communications the presynaptic neuromuscular blocking action of taipoxin. A comparison with beta-bungarotoxin and crotoxin. *Toxicon* 15(6): 571-6.
- Chang LS, Yang CC. (1993) Structural determinants of the intrinsic fluorescence emission in notexin and phospholipase A2 enzymes. J Prot Chem 12(5): 579-583.
- Chang CC, Lin PM, Chang LS, Kuo KW. (1995) Chemical modification of tryptophan residues in alpha-neurotoxins from Ophiophagus hannah (king cobra) venom. J Prot Chem 14(2): 89-94.
- Chang LS, Lin J, Wu PF. (1997a) cDNA sequence analysis of cardiotoxin variants from Taiwan cobra. *Biochem Mol Biol Internat* 42(1): 85-92.
- Chang LS, Lin, SR, Chang CC. (1997b) The structural variations of epsilon-amino groups in phospholipase A2 enzymes from *Naja naja atra* and *Bungarus multicinctus* venoms. J Prot Chem 16(2): 133-137.
- Changeux JP. (1981) The aceylcholine receptor: An "alosteric" membrane protein. *Harvey Lect* 75: 85-254.
- Changeux JP, Devillers-Thiery A, Chemouilli P. (1984) Acetylcholine receptor: an allosteric protein. *Science* 225: 1335-1345.
- Chester A, Crawford GP. (1982) In vitro coagulant properties of venoms from Australian snakes. Toxicon 20(2): 501-504.
- Chicheportiche R, Vincent JP, Kopeyan, C, Schweitz H, Lazdunski M. (1975) Structurefunction relationship in the binding of snake neurotoxins to the torpedo membrane receptor. *Biochemistry* 14(10): 2081-2091.
- Chippaux JP, Williams V, White J. (1991) Snake venom variability: methods of study, results and interpretation. *Toxicon* 29(11): 1279-1303.
- Chow GM, Kini P. (1998) Inventory of Exogenous factors from animal sources that induce platelet aggregation. Com Internat Soc Thromb Hemostas 17.
- Chu CC, Li SH, Chen YH. (1995) Resolution of isotoxins in the beta-bungarotoxin family. J Chromatog A 694(2): 492-497.
- Cobcroft RGW, Cook A, David W, David J, Masci P,(1997) Hemolytic Uremic Syndrome following Taipan envenomation with response to Plasmapheresis. *Pathology* 29: 399-402.
- Cogger HG, Heatwole H. (1981) The Australian reptiles; origins, biogeography, distribution patterns and island evolution. Ecological biogeography of Australia. A. Keast. The Hague, Junk: 1333-1373.
- Cogger HG. (2000) Reptiles and Amphibians of Australia" (sixth edition), Reed/New Holland Publishers, Sydney, Australia. 808 pp.

- Cohen SN, Chang ACY, Hsu L. (1972) Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc Nat Acad Sci USA 69: 2110.
- Condrea E, Fletcher JE, Rapuano BE, Yang CC, Rosenberg P. (1981) Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from *Naja nigricollis* snake venom and less toxic phospholipases A2 from *Hemachatus haemachatus* and *Naja atra* snake venoms. *Toxicon* 19(1): 61-71.
- Condrea E, Yang CC, Rosenberg P. (1981) Lack of correlation between anticoagulant activity and phospholipid hydrolysis by snake venom phospholipases A2. *Thromb* and Haemostas. 45(1): 82-5.
- Conticello SG, Yoav A, Nili B, Levy Z, Fainzilber M. (2001) Mechanisms for Evolving Hyper variability: The case of conopeptides. *Mol Biol Evol* 18(2): 120-131.
- Conti-Tronconi BM, Raftery MA. (1982) The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. *Annu Rev Biochem* 51: 491-530.
- Cordwell SJ, Nouwens AS, Bradley JW. (2001) Comparative proteomics of bacterial pathogens. *Proteomics* 4: 461-472
- Coulter AR, Cox JC, Sutherland SK, Waddell CJ. (1978) A new solid phase sandwich radioimmunoassay and its application to the detection of snake venom. *J Immunol Meth* 23: 241-252.
- Coulter AR, Harris RD, Sutherland SK. (1980) Clinical laboratory: enzyme immunoassay for the rapid clinical identification of snake venom. *Med J Aust* 1(9): 433-435.
- Covacevich J, Wombey J. (1976) Recognition of *Parademasia microlepidotus* (McCoy) (Elapidae), a dangerous Australian snake. *Proc R Soc Queensl* 87: 29-32.
- Crachi MT, Hammer LW, Hodgson WC. (1999a) The effects of antivenom on the in vitro neurotoxicity of venoms from the taipans *Oxyuranus scutellatus*, *Oxyuranus microlepidotus* and *Oxyuranus scutellatus canni*. *Toxicon* 37(12): 1771-1718.
- Crachi MT, Hammer LW, Hodgson WC. (1999b) A pharmacological examination of venom from the Papuan taipan (*Oxyuranus scutellatus canni*) Toxicon 37(12): 1721-1734.
- Cull Candy SG, Fohlman J, Gustavsson D, Lullmann Rauch R, Thesleff S. (1976) The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. *Neurosci* 1(3): 175-180.
- Currie BJ, Sutherland SK, Hudson BJ, Smith AM. (1991) An epidemiological study of snake bite envenomation in Papua New Guinea. *Med J Aust* 154(4): 266-268.
- Currie BJ (2000) Clinical toxicology: a tropical Australian perspective. *Therapeut Drug* Monit 22(1): 73-78.
- Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wüster W. (1996) Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (*Calloselasma rhodostoma*) *Toxicon* 34(1): 67-79.
- Daltry JC, Wüster W, Thorpe RS. (1996) Diet and snake venom evolution. *Nature* 379(6565): 537-540.
- Damus PS, Markland Jr FS, Davidson TM, Shanley JD. (1972) A purified procoagulant enzyme from the venom of the eastern diamondback rattlesnake: In vivo and in vitro studies. J. Lab. clin. Med. 79: 906-923

- Davidson FF, Dennis EA. (1990) Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J Mol Evol 31(3): 228-238.
- Davie EW, Fujikawa K, Keisiel W. (1991) The coagulation cascade: initiation, maintenance, and regulation. *Biochem* 30(10): 363-370.
- De Haas GH. (1961) Synthetic mixed-acid kephalins; hydrolysis by "phospholipase A' and some properties of their sodium salts. *Biochem J* 81: 34-35.
- Dennis EA. (1994) Diversity of group types, regulation. and function of phospholipase A2. *J Biol Chem* 269: 13057-13060.
- Dennis EA. (1997) The growing phospholipase A2 superfamily of signal transduction enzymes. *Annu Rev Biochem.* 22: 1-2.
- Denson KWE. (1969) The use of Antibodies in the Study of Blood coagulation. Oxford, Blackwell Scientific.
- Denson KW. (1976) The clotting of a snake (*Crotalus viridis Helleri*) plasma and its interaction with various snake venoms. *Thromb Haemostas* 35(2): 314-323.
- Deshimaru M, Ogawa T, Nakashaima K, Nobuhisa I, Chijiwa T, Shimohigashi Y, Fukumaki Y, Niwa M,Yamashina I, Hattori S, Ohno M. (1996) Accelerated evolution of crotalinae snake venom gland serine proteases. *Febs Letters* 397(1): 83-88.
- Dijkstra BW, Drenth J, Kalk K. (1981) Active site and catalytic mechanism of phospholipase A2. *Nature (London)* 289: 604-606.
- Dijkstra BW, Renetseder R, Kalk KH, Hol WGJ, Drenth J. (1983) Structure of porcine pancreatic phospholipase A2 at 2.6A resolution and comparison with bovine phospholipase A2. *J Mol Biol* 168: 163-179
- Dittmar S, Ruf W, Edgington TS. (1997) Transmembrane glycoprotein tissue factor. Biochem J 321(3): 181-193
- Dodds D'Nette, Schlimgen AK, Lu S, Perin MS. (1995) Novel reticular calcium binding protein is purified on taipoxin columns. *J Neurochem* 64(5): 2339-2344.
- Dodds DC, Omeis IA, Cushman SJ, Helms JA, Perin MS. (1997) Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. *J Biol Chem* 272(34): 21488-21494
- Doorty KBB, Stuart W, Jonathan DF, Strong PN. (1997) Re-evaluation of taicatoxin as a selective Ca2+ channel probe. A novel small conductance Ca²+ activated K+ channel blocker from *Oxyuranus scutellatus* Taipan Venom. *Am Soc Biochem Mol Biol* 272(32): 19925-19930.
- Dua R, Wu SK, Cho W. (1995) A structure function study of bovine pancreatic phospholipase A2 using mixed liposomes. *J Biol Chem* 270: 263-268.
- Duda TF, Palumbi SR. (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod *Conus*. *Proc Nat Acad Sci USA*. 96(12): 6820-6823.
- Duda TF, Palumbi SR. (2000) Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. *Mol Biol Evol* 17(9): 1286-1293.
- Dufton MJ, Hider RC. (1983) Classification of phospholipases A2 according to sequence. Evolutionary and pharmacological implications. *Eur J Biochem* 137(3): 545-551.
- Dufton MJ, Hider RC. (1983) Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venoms. *Crit. Rev. biochem.* 14: 113-171.

- Dunn RD, Broady KW. (2001) Snake inhibitors of phospholipase A(2) enzymes. Biochim Biophys Acta 1533(1): 29-37.
- Egan NB, Russell FE. (1984) Effects of preparatory procedures on the venom from a rattlesnake (*Crotalus molossus moossus*), as determined by isoelectric focusing. *Toxicon* 22: 654-656.
- Egberg N, Nordstrom S. (1970) Effects of Reptilase induced intravascular coagulation in dogs. *Acta Physiol. Scand.* 79: 492-505
- Endo Y, Sato S, Ishii S, Tamiya N. (1971) The disulphide bonds of erabutoxin a, a neurotoxic protein of a sea-snake (*Laticauda semifasciata*) venom. *Biochem J* 122(4): 463-467.
- Endo T, Tamiya N. (1987a) Current view on the structure-function relationship of postsynaptic neurotoxins from snake venoms. *Pharmacol Ther.* 34(3): 403-451.
- Endo T, Oya M, Tamiya N, Hayashi K. (1987) Role of C-terminal tail of long neurotoxins from snake venoms in molecular conformation and acetylcholine receptor binding: proton nuclear magnetic resonance and competition binding studies. *Biochem* 26(14): 4592-4598.
- Endo T, Tamiya N. (1991) Structure-function relationship of post-synaptic neurotoxins from snake venoms. Snake Toxins. A. L. Harvey. New York, Pergamon Press: 165-222.
- Ernst C, Harrison H. (1999) Ernst & Harrison's Principles of Internal Medicine & www.TheSnake.Org.
- Fantini E, Athias P, Tirosh R, Pinson A. (1996) Effect of Taicatoxin (TCX) on the electrophysiological mechanical and biochemical characteristics of spontaneously beating ventricular cardiomyocytes. *Mol Cell Biochem* 160: 61-66.
- Farid TM, Tu AT, el Asmar MR. (1989) Characterization of cerastobin, a thrombin-like enzyme from the venom of *Cerastes vipera* (Sahara sand viper) *Biochemistry* 28(1): 371-377.
- Fathi H, B., Rowan, E.G., Harvey, A.L. (2001) The facilitatory actions of snake venom phospholipase A(2) neurotoxins at the neuromuscular junction are not mediated through voltage-gated K(+) channels. *Toxicon* 39(12):1871-1882
- Favreau P, Le Gall L, Benoit F, Molgo JG. (1999) A review on conotoxins targeting ion channels and acetylcholine receptors of the vertebrate neuromuscular junction. *Acta Physiol Pharmacol Ther Latinoam.* 49(4): 257-267.
- Feinstein MB, Helenda SP. (1988) Arachidonic acid mobilization in platelets: The possible role of protein kinase C and G proteins. *Ex-perientia* 44: 101-104
- Fletcher JE, Rapuano BE, Condrea E, Yang CC, Rosenberg P. (1981) Relationship between catalysis and toxicological properties of three phospholipases A2 from elapid snake venoms. *Toxic appl Pharmac* 59: 375-382.
- Fletcher JE, Rapuano BE, Condrea E, Yang CC, Rosenberg P. (1980) Comparison of a relatively toxic phospholipase A2 from *Naja nigricollis* snake venom with that of a relatively non toxic phospholipase A2 from *Hemachatus hemachatus* snake venom II. Pharmacological properties in relationship to enzymatic activity. *Biochem Pharmac* 29: 1565-1575.
- Fohlman JE, Eaker D, Karlsson E, Thesleff S. (1976) Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus) Isolation, characterization, quaternary structure and pharmacological properties. Eur J Biochem 68(2): 457-469.

- Fohlman J, Lind P, Eaker D. (1977) Taipoxin, an extremely potent presynaptic snake venom neurotoxin. Elucidation of the primary structure of the acidic carbohydrate-containing taipoxin-subunit, a prophospholipase homolog. *FEBS Letters* 84(2): 367-371.
- Fohlman J, Eaker D, Dowdall MJ, Lullman Rauch R, Sjodin T, Leander S. (1979) Chemical modification of taipoxin and the consequences for phospholipase activity, pathophysiology, and inhibition of high-affinity choline uptake. *Eur J Biochem* 94(2): 531-540.
- Fohlman J. (1979) Comparison of two highly toxic Australian snake venoms: the taipan (Oxyuranus s. scutellatus) and the fierce snake (Parademansia microlepidotus) Toxicon 17(2): 170-172.
- Fraenkel-Conrat H. (1982) Snake venom neurotoxins related to phospholipase A2. J. toxicol. toxin Rev. 1: 205-221
- Francis B, Seebart C, Kaiser II. (1992) Citrate is an endogenous inhibitor of snake venom enzymes by metal-ion chelation. *Toxicon* 30(10): 1239-1246.
- Francis B, Kaiser II, (1993) Inhibition of metalloproteinases in *Bothrops asper* venom by endogenous peptides. *Toxicon* 31(7): 889-899.
- Francis BR, da SilvaJunior NJ, Seebart C, Casais e Silva LL, Schmidt JJ, Kaiser II. (1997) Toxins isolated from the venom of the Brazilian coral snake (Micrurus frontalis frontalis) include hemorrhagic type phospholipases A2 and postsynaptic neurotoxins. *Toxicon* 35(8): 1193 1203
- Francischetti IM, Saliou B, Leduc M, Carlini CR, Hatmi M, Randon J, Faili A, Bon C. (1997) Toxins isolated from the venom of the Brazilian coral snake (*Micrurus frontalis frontalis*) include hemorrhagic type phospholipases A2 and post-synaptic neurotoxins. *Toxicon* 35(8): 1193-1203.
- Francischetti IM, Gombarovits ME, Valenzuela JG, Carlini CR, Guimaraes JA. (2000) Intraspecific variation in the venoms of the South American rattlesnake (*Crotalus durissus terrificus*) Comp Biochem Physiol C Toxicol Pharmacol 127(1): 23-36.
- Friedenberg R, Seligman A. (1972) Acetylcholinesterase at the Myoneural Junction: Cytochemical Ultrastructure and Some Biochemical Considerations. J Histochem Cytochem 20: 771.
- Fry BG. (1999) Structure-function properties of venom components from Australian elapids. *Toxicon* 37: 11-32.
- Fry BG, Alewood PF. (2001) Novel natriuretic peptides from the venom of *Oxyuranus* microlepidotus (Inland taipan). Submitted (DEC-2001) to Swiss-Prot.
- Fry BG, Wickramaratna JC, Jones A, Alewood PF, Hodgson WC. (2001) Species and regional variations in the effectiveness of antivenom against the *in vitro* neurotoxicity of death adder (*Acanthophis*) venoms. *Toxicol Appl Pharmacol* 175(2): 140-148.
- Fry BG, Wickramaratna JC, Hodgson WC, Alewood PF, Kini RM, Ho H, Wüster W. (2002) Electrospray liquid chromatography/mass spectrometry fingerprinting of *Acanthophis* (death adder) venoms: taxonomic and toxinological implications. *Rap Commun Mass Spec Rcm* 16(6): 600-608.
- Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP. (2003a) Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57(1): 110-129.
- Fry BG, Wüster W, Ryan Ramjan SF, Jackson T, Martelli P, Kini RM. (2003b) Analysis of Colubroidea snake venoms by liquid chromatography with mass

spectrometry: evolutionary and toxinological implications. *Rap Commun Mass Spec Rcm* 17(18): 2047-2062.

- Fujimi TJ, Tsuchiya T, Tamiya T. (2002) A comparative analysis of invaded sequences from group IA phospholipase A(2) genes provides evidence about the divergence period of genes groups and snake families. *Toxicon* 40(7): 873-884.
- Fujimi TJK, Yoshinobu T, Takahide, Tamiya T. (2002) Nucleotide sequence of phospholipase A2 gene expressed in snake pancreas reveals the molecular evolution of toxic phospholipase A2 genes. *Gene* 292: 225-231.
- Furihata K, Clemetson KJ, Deguchi H, Kunicki TJ. (2001) Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. *Arterio Thromb Vas Biol* 21(11): 1857-1863
- Fuse N, Tsuchiya T, Nonomura Y, Ménez A, Tamiya T. (1990a) Structure of the snake short-chain neurotoxin, erabutoxin c, precursor gene. *Eur J Biochem* 193(3): 629-633.
- Galvani (a) MH, Mahmoud, Herbert B, Righetti PG. (2001) Aldylation kinetics of proteins in preparation for two-dimensional maps: A matrix assisted laser desorption/ionization-mass spectrometry investigation. *Electrophoresis* 22: 2058-2065.
- Galvani (b) MR, Luca H, Mahmoud, Herbert B, Righetti PG. (2001) Protein alkylation in the presence/absence of thiourea in proteome analysis: A matrix assisted laser desorption/ionization-time of flight-mass spectrometry investigation. *Electrophoresis* 22: 2066-2074.
- Gandolfo G, Lambeau G, Lazdunski M, Gottesmann C. (1996) Effects on behaviour and EEG of single chain phospholipases A2 from snake and bee venoms injected into rat brain: search for a functional antagonism. *Pharmacol Toxicol* 78(5): 341-347.
- Garde HC. (1890) Notes of three cases of snake bite treated by subcutaneous injections of strychnine. *Aust med gaz* 9: 157.
- Gaucher JF, Ménez R, Arnoux B, Pusset J, Ducruix A. (2000) High resolution x-ray analysis of two mutants of a curaremimetic snake toxin. *Eur J Biochem* 267(5): 1323-1329.
- Gene JA, Lomonte B, Butierrez JM, Cerdas L. (1985) Changes in the electrophoretic pattern of the venom of the bushmaster (*Lachesis muta stenophrys*) stored under various conditions. *Revista de Biologia Tropical* 33(1): 63-65.
- Gerrard JM, Robinson P, Narvey M, McNicol A. (1993) Increased phosphatidic acid and decreased lysophosphatidic acid in responce to thrombin is associated with inhibition of platelet aggregation. *Biochem Cell Biol* 71(9-10): 432-439.
- Gong QH, Wieland SJ, Fletcher JE, Conner GE, Jiang MS. (1989) Effect of a phospholipase A2 with cardiotoxin-like properties, from *Bungarus fasciatus* snake venom, on calcium-modulated potassium currents. *Toxicon* 27(12): 1339-1349.
- Gong N, Armugam A, Jeyaseelan K. (1999) Post-synaptic short-chain neurotoxins from *Pseudonaja textilis*. cDNA cloning, expression and protein characterization. *Eur J Biochem* 265(3): 982-989.
- Gong NanLing, Armugam A, Jeyaseelan, K. (2000) Molecular cloning, characterization and evolution of the gene encoding a new group of short chain a-neurotoxins in an Australian elapid, *Pseudonaja textilis*. FEBS 473: 303-310
- Gong N, Armugam A, Mirtschin P, Jeyaseelan K. (2001) Cloning and characterization of the pseudonajatoxin b precursor. *Biochem J* 358(Pt 3): 647-656.

- Gregory-Dwyer VM, Egen NB, Bianchi Bosisio A, Righetti PG, Russell RE. (1986) An isoelectric focusing study of seasonal variation in rattlesnake venom proteins. *Toxicon* 24: 995-1000.
- Gribskov M, Devereux J, Burgess RR. (1984) The codon preference plot; graphic analysis of protein coding sequences and prediction of gene expression. *Nucleic Acids Res.* 12: 539-549
- Gubensek F, Sket D, Turk V, Lebez D. (1974) Fractionation of *Vipera ammodytes* venom and seasonal variation of its composition. *Toxicon* 12(2): 167-171.
- Gubensek F, Liang NS, Pungercar J, Strukelj B, Curin Serbec V, Krizaj I. (1994) Presynaptically acting phospholipase A2 from Vipera ammodytes venom. Ann New York Acad Sci710: 120-125.
- Gutierrez JM, Arroyo O, Bolanos R. (1980a) Myonecrosis, hemorrhage and edema induced by *bothrops asper* venom in white mice (author's transl) *Toxicon* 18(5-6): 603-610.
- Gutierrez JM, Chaves F. (1980b) Proteolytic, hemorrhagic and myonecrotic effects of the venoms of Costa Rican snakes from the genera *Bothrops, Crotalus* and *Lachesis* (author's transl) *Toxicon* 18(3): 315-321.
- Gutierrez JM, Romero M, Diaz C, Borkow G, Ovadia M. (1995) Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake *Bothrops asper* (terciopelo) *Toxicon* 33(1): 19-29.
- Hains PG, Broady KW. (2000) Pruification and Inhibitory profile of phospholipase A2 inhibitors from Australian elapid sera. *Biochem J* 346: 139-146.
- Hall R. (2001) Cenozoic reconstructons of SE Asia and the SW Pacific changing pattersn of land and sea. *Faun Floral Mig Evol in SE Asia-Australasia*. 35-56.
- Hamilton RC, Broad AJ, Sutherland SK. (1980) Ultrastructural effects of the venom of the small-scaled snake (*Parademansia microlepidotus*) on the nerve terminals of the rat diaphragm. *Aust J Exper Biol Med Sci* 58(4): 377-380.
- Han SK, Yoon ET, Scott DL, Sigler PB, Cho W. (1997) Structural aspects of interfacial adsorption. A crystallographic and site-directed mutagenesis study of the phospholipase A2 from the venom of *Agkistrodon piscivorus piscivorus*. J Biol Chem 272(6): 3573-3582.
- Harris JB, Johnson MA, Johnson E. (1975) Pathological responses of a rat skeletal muscle to a single subcutaneous injection of a toxin isolated from the venom of the Australian tiger snake *Notechis scutatus scutatus*. *Clin Exp Pharmacol Physiol* 2: 383-404.
- Harris AR, Hurst PE, Saker BM. (1976) Renal failure after snake bite. Med J Aust 2(11): 409-411.
- Harris JB, Johnson MA, Macdonell C. (1977) Taipoxin, a presynaptically active neurotoxin, destroys mammalian skeletal muscle [proceedings]. *Brit J Pharmacol* 61(1): 133P.
- Harris JB, Maltin CA. (1982) Myotoxic activity of the crude venom and the principal neurotoxin, taipoxin, of the Australian taipan, Oxyuranus scutellatus. Brit J Pharmacol 76(1): 61-75.
- Harris JB, Cullen MJ. (1990) Muscle necrosis caused by snake venoms and toxins. Elect Mic Rev 3(2): 183-211.
- Harris JB, Grubb BD, Maltin CA, Dixon R. (2000) The Neurotoxicity of the Venom Phosphoipases A2, Notexin and Taipoxin. *Exper Neurology* 161: 517-526.

- Harrison RA, Wüster W, Theakston RDG. (2003) The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody. *Toxicon* 41(4): 441-449.
- Havt A, Fonteles MC, Monteiro HSA. (2001) Toxicon 39:1841-1846.
- Heatwole H, Powell J. (1998) Resistance of eels (*Gymnothorax*) to the venom of sea kraits (*Laticauda colubrina*): a test of coevolution. *Toxicon* 36(4): 619-625.
- Heinrikson RL, Krueger ET, Keim PS. (1977) Amino acid sequence of phospholipase A2-alpha from the venom of *Crotalus adamanteus*. A new classification of phospholipases A2 based upon structural determinants. *J Biol Chem* 252: 4913-4921.
- Heise PJ., Maxson LR, Dowling, HG, Hedges, SB. (1995) Higher-Level Snake Phylogeny Inferred from Mitochondrial DNA Sequences of 12S rRNA and 16S rRNA Genes. *Mol Biol Evol* 12(2): 259-265
- Herbert BG, Marina H, Mahmoud OE, MacCarthy J, Pedersen S, Righetti PG. (2001) Reduction and alkylation ofproteins in prepartation of two dimensional map analysis: When, when and how? *Electrophoresis* 22: 2046-2057.
- Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nuc Acids Res* 22: 4673-4680
- Hill RE, Mackessy SP. (2000) Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. *Toxicon* 38(12): 1663-1687.
- Ho PL, Soares MB, Maack T, Puorto G, Furtado MFD, Raw I. (1997a) Cloning and characterization of *Micrurus corallinus* toxins. J. Venom. Anim. Toxins. 3(1): 120
- Ho PL, Soares MB, Maack T, Gimenez I, Puorto G, Furtado MF, Raw I. (1997b) Cloning of an unusual natriuretic peptide from the South American coral snake *Micrurus corallinus. Eur J Biochem.* 15;250(1):144-149.
- Hodgson WC, Wickramaratna JC, (2002) In vitro neuromuscular activity of snake venoms. Clin Exper Pharmacol Physiol 29(9): 807-814.
- Hoffstetter R. (1939) Contribution a l'etude des Elapidae actuels et fossiles et de l'osteologie des ophidiens. Arch du Meseum d'Histoire naturelle de Lyon 15: 1-78.
 Hoffstetter R. (1955) Twaite de relevante logie. Daria. Toma V. Masson
- Hoffstetter R. (1955) Traite de paleontologie. Paris, Tome V. Masson.
- Hofmann H, Bon C. (1987) Blood coagulation induced by the venom of Bothrops atrox.
 1. Identification, purification, and properties of a prothrombin activator. *Biochemistry* 26(3): 772-780.
- Holz GG, Habener JF. (1998) Black widow spider alpha-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secreting hormones. Comp Biochem Physiol B Biochem Mol Biol 121(2): 177-84.
- Housset D, Fintecilla-Camps JC. (1996) The structures and evolution of snake toxins of the three-finger folding type. Molecular Biology Intelligence Unit: Protein Toxin Structure TX. M. W. Parker. Austin, Landes Co: 271-290.
- Hseu M-J Y, Chon-Ho, Tzeng M. (1999) Crocalbin: a new calcium-binding protein that is also a binding protein for crotoxin, a neurotoxic phospholipase A2. *FEBS* 445: 440-444.

- Huang HC. (1984) Effects of phospholipases A2 from *Vipera russelli* snake venom on blood pressure, plasma prostacyclin level and renin activity in rats. *Toxicon* 22(2): 253-264.
- Huang QQ, Teng MK, Niu LW. (1999) Purification and characterization of two fibrinogen-clotting enzymes from five-pace snake (Agkistrodon acutus) venom. *Toxicon* 37(7): 999-1013.
- Hucho F. (1986) The nicotinic acetylcholine receptor and its ion channel. Eur J Biochem 158: 211-226.
- Inoue S, Kogaki H, Ikeda K, Samejima Y, Omori Satoh T. (1991) Amino acid sequences of the two subunits of a phospholipase A2 inhibitor from the blood plasma of *Trimeresurus flavoviridis*. Sequence homologies with pulmonary surfactant apoprotein and animal lectins. *J Biol Chem* 266(2): 1001-1007.
- Irwin RO, Mohamed AH, Haast WE. (1970) Toxicity of Elapidae venoms and an observation in relation to geographical location. *Toxicon.* 8(1): 51-54.
- Ishizake JH, Ohara O, Arita H. (1995) Adv. Prostaglan Thromb Leukot Res. 23: 85-87.
- Janssen MJ, Burghout PJ, Verheij HM, Slotboom AJ, Egmond MR. (1999) Introduction of a C-terminal aromatic sequence from snake venom phospholipases A2 into the porcine pancreatic isozyme dramatically changes the interfacial kinetics. *Eur J Biochem* 263(3): 782-788.
- Jeng TW, Fraenkel-Conrat H. (1978a) Chemical modification of histidine and lysine residues of crotoxin. *FEBS Letters* 87: 291-296.
- Jeng TW, Hendon RA, Fraenkel-Conrat H. (1978b) Search for relationship among the hemolytic, phospholipolytic and neurotoxic activities of snake venoms. *Proc Acad Nat Sci USA* 75: 600-604.
- Jeyaseelan K, Armugam A, Lachumanan R, Tan CH, Tan NH. (1998) Six isoforms of cardiotoxin in malayan spitting cobra (*Naja naja sputatrix*) venom: cloning and characterization of cDNAs. *Biochim Biophys Acta* 1380(2): 209-222.
- Jeyaseelan K, Armugam A, Donghui M, Tan N. (2000) Structure and phylogeny of the venom group I phospholipase A(2) gene. *Mol Biol Evol* 17(7): 1010-1021.
- Jimenez R. (1975) Determination of prothrombin (factory II) in one step using Taipan venom. *Boletin Medico Del Hospital Infantil de Mexico* 32(2): 259-266.
- John P, Whatley FR. (1970) Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in *Micrococcus denitrificans*. *Biochim Biophys Acta* 216(2): 342-352.
- John TR, Smith LA, Kaiser II. (1994) Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions. *Gene* 139(2): 229-234.
- Jonsson AP. (2001) Mass spectrometry for proein and peptide characterisation. *Cell Mol Life Sci* 58: 868-884.
- Joseph JSC, Maxey CM, Jeyaseelan, K, Kini, RM. (1999) Amino Acid Sequence of Trocarin, a Prothrombin Activator from *Tropidechis carinatus* Venom: Its Structural Similarity to Coagulation Factor Xa. *Blood* 94(2): 621-631.
- Joseph JSC, Maxey CM, Mirtschin PJ, Kini RM. (2002) Effect of snake venom procoagulants on snake plasma: implication for the coagulation cascade of snakes. *Toxicon* 40: 175-183.
- Joseph JS, Kini RM. (2002) Snake venom prothrombin activators homologous to blood coagulation factor Xa. *Haemostasis* 31(3): 234-240.

- Joubert FJ, Viljoen CC. (1979) Snake venom. The amino-acid sequence of the subunits of two reduced and S-carboxymethylated proteins (C8S2 and C9S3) from *Dendroaspis angusticeps* venom. *Hoppe-Seylers Zeitschrift Fur Physiologische Chemie* 360(8): 1075-1090.
- Judge RK, Henry PJ, D'Aprile AC, Lynch D, Jelinek GA, Wilce MCJ, Wilce JAW. (2002) Identification of PLA₂ and a-Neurotoxin Proteins in the Venom of *Pseudonaja affinis* (Dugite), *Toxicol App Pharmacol* 181: 184-191
- Kaiser II, Aird SD. (1987) A crotoxin homolog from the venom of the Uracoan rattlesnake (*Crotalus vegrandis*) *Toxicon* 25(10): 1113-1120.
- Kaiser II, Middlebrook JL. (1988) Preparation of a crotoxin neutralizing monoclonal antibody. *Toxicon* 26(9): 855-865.
- Kamenskaya MA, Thesleff S. (1974) The neuromuscular blocking action of an isolated toxin from the elapid (*Oxyuranus scutellatus*) Acta Physiol Scand 90(4): 716-724.
- Kamiguti AS, Theakston RD, Sherman N, Fox JW. (2000) Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (*Dispholidus typus*) Toxicon 38(11): 1613-1620.
- Karlin A. (1980) Molecular properties of nicitinic acetylcholine receptors. Poste G, Nicolson GL, Colman CW, Eds., Cell Surface and Neuronal Functions Elsevier/North-Holland Biochemical, New York
- Karlsson E, Mbugua PM, Rodriguez ID. (1984) Fasciculins, anticholinesterase toxins from the venom of the green mamba *Dendroaspis angusticeps*. 79(4): 232-240.
- Kazmi S, Krull IS. (2001) Proteomics and the current state of separations science, part one. *Pharmagenomics* 14-29.
- Keogh JS, Shine R, Donnellan S. (1998) Phylogenetic relationships of terrestrial Australo-Papuan elapid snakes (subfamily Hydrophiinae) based on cytochrome b and 16S rRNA sequences. *Mol Phyl Evol* 10(1): 67-81.
- Keogh JS. (1999) Evolutionary implications of hemipenial morphology in the terrestial Australian elapid snakes. *Zoo J Lin Soc* 125: 239-278.
- Keogh JS, Scott, IAW, Scanlon, JD. (2000) Molecular phylogeny of viviparous Australian elapid snakes: affinities of *Echiopsis atriceps* and *Drysdalia coronata*, with description of a new genus. *J Zool Lond* 252: 317-326.
- Kim HS, Tamiya N. (1981) Isolation, properties and amino acid sequence of a longchain neurotoxin, *Acanthophis antarcticus* b, from the venom of an Australian snake (the common death adder, *Acanthophis antarcticus*) *Biochem J* 193(3): 899-906.
- King GK, Smith IM. (1991) Taipan envenomation. Med J Aus 155(11-12): 850.
- King MW. (2001) The Clotting Cascades, IU School of Medicine 2002.
- Kini RM, Kawabata SI, Iwanaga S. (1986) Comparison of amino terminal region of three isoenzymes of phospholipases A2 (TFV PL-Ia, TFV PL-Ib, TFV PL-X) from *Trimeresurus flavoviridis* (habu snake) venom and the complete amino acid sequence of the basic phospholipase, TFV PL-X. *Toxicon* 24(11-12): 1117-1129.
- Kini RM, Evans HJ. (1989a) A model to explain the pharmacological effects of snake venom phospholipases A2. *Toxicon* 27(6): 613-635...CHECK
- Kini RM, Evans HJ. (1989b) Role of cationic residues in cytolytic activity: modification of lysine residues in the cardiotoxin from *Naja nigricollis* venom and correlation between cytolytic and antiplatelet activity. *Biochemistry* 28(23): 9209-9215.

- Kini RM. (1997) Venom Phospholipase A2 Enzymes A complex multifunctional protein puzzle. Venom Phospholipase A2 Enzymes: Structure, Function and Mechanisms. R. M. Kini. Chichester, John Wiley and Sons: 1-28.
- Kini RM, Rao VS, Joseph JS. (2001) Procoagulant proteins from snake venoms. *Haemostasis* 31(3): 218-224.
- Kinter M, Sherman NE. (2000) Protein Sequencing and Identification Using Tandem Mass Spectrometry, John Wiley & Sons
- Kirkpatrick LL, Matzuk MM, Dodds DC, Perin MS. (2000) Biochemical Interactions of the Neuronal Pentraxins. *J Biol Chem* 275, 17786-17792.
- Kogaki H, Inoue S, Ikeda K, Samejima Y, Omori Satoh T, Hamaguchi K. (1989) Isolation and fundamental properties of a phospholipase A2 inhibitor from the blood plasma of *Trimeresurus flavoviridis*. J Biochem 106(6): 966-71.
- Komori Y, Nikai T. (1998) Chemistry and biochemistry of kallidrein-like enzyme from snake venoms. J. Toxicol. Toxin Rev. 17: 261-277.
- Kondo K, Zhang J, Xu K, Kagamiyama H. (1989) Amino acid sequence of a presynaptic neurotoxin, agkistrodotoxin, from the venom of *Agkistrodon halys Pallas*. 105(2): 196-203.
- Kordis D, Gubensek F. (2000) Adaptive evolution of animal toxin multigene families. Gene 261: 43-52.
- Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Chow EP, Tizard R, Pepinsky RB. (1989) Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem 264(10): 5768-5775.
- Kuchler K, Gmachl M, Sippl MJ, Kreil G. (1989) Eur. J. Biochem 184: 249-254
- Kuipers OP, Kerver J Van Meersbergen J, Vis R, Dijkman R, Verhiej HM, De Haas GH. (1990) Influence of size and polarity of residue 31 in porcine pancreatic phospholipase A2 on catalytic properties. *Prot Engin* 3: 599-603.
- Kumar TK, Jayaraman G, Lee CS, Arunkumar AI, Sivaraman T, Samuel D, Yu C. (1997) Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomolec Struct Dyn 15(3): 431-463.
- Kyte J, Doolitle RF. (1982) A simple method for displaying the hydrophathic character of a protein. *J Mol Biol* 157:105-132.
- Lachumanan R., Armugam A., Tan CH., Jeyaseelan K. (1998) Structure and organization of the cardiotoxin genes in Naja naja sputatrix. <u>Febs Letters</u> 433(1-2): 119-124.
- Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 277: 680-685.
- Lalloo DG, Trevett AJ, Nwokolo L, Ian F, Naraqi S, Kevau I, Kemp MW, Hooper JL, Theakston RDG, Warrell D. (1995a) Snake bites by the Papuan taipan (*Oxyuranus scutellatus canni*): paralysis, hemostatic and electrocardiographic abnormalities, and effects of antivenom. *Am Trop Med Hyg* 52(6): 525-531.
- Lalloo, DG, Trevett AJ, Owens D, Minei J, Naraqi S, Saweri A, Hutton RA, Theakston RD, Warrell DA. (1995b) Coagulopathy following bites by the Papuan taipan (*Oxyuranus scutellatus canni*). Blood Coag Fibrin 6(1): 65-72.
- Lalloo DG, Trevett AJ, Warrell DA. (1997) Severe envenomation by the taipan (Oxyuranus scutellatus). Med J Aust 167(1): 54-55.
- Lambeau G, Barhanin J, Schweitz H, Qar J, Lazdunski M. (1989) Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. *J Biol Chem* 264(19): 11503-11510.

- Lambeau G, Schmid-Alliana A, Lazudunski M, Barhanin J. (1990) Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. *J Biol Chem* 265(16): 9526-9532.
- Lambeau G, Barhanin J, Lazdunski M. (1991) Identification of different receptor types for toxic phospholipases A2 in rabbit skeletal muscle. *Febs Letters* 293(1-2): 29-33.
- Lambeau G, Lazdunski M. (1999) Receptors for a growing family of secreted phospholipases A2. *Tips Elsevier Science* 20.
- Lee BI, Yoon ET, Cho W. (1996) Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A2. *Biochemistry* 35: 4231-4240.
- Lee CY, Tsai MC. (1976) Is the contractile response to exogenous acetylcholine due to a presynaptic effect? *Brit J Pharmacol* 57(4): 543-545.
- Lee CY. (1979) Recent advances in chemistry and pharmacology of snake toxins. Adv Cytopharmacol 3: 1-16.
- Lee CY, Ho CL. (1982) The pharmacology of phospholipase a2 isolated from snake venoms, with particular reference to their effects of neuromuscular transmission. Oxford, Pergamon Press.
- Lee S, Park SK, Kang KP, Kang SK, Kim SZ, KimW. (2004) Relationship of plasma Dendroaspis natriuretic peptide-like immunoreactivity and echocardiographic parameters in chronic haemodialysis patients Nephrology 9(3) 171
- Lester IA. (1957) A case of snake-bite treated by specific taipan antivenene. *Med J Aust* 44(11): 389-391.
- Lewis RA, Dooley M, Martin J, Drinkwater R, Craid D, Andrews P. (1996) Secrets of the Cone Shell. *Todays Life Science* 8(8): 16-24.
- Lewis LJ, Garcia ML. (2003) Therapeutic potential of venom peptides. *Nature Rev, Drug Discovery*. www.nature.com 2: 790-802.
- Lind P. (1982) Amino-acid sequence of the beta 1 isosubunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (*Oxyuranus s. scutellatus*) Eur J Biochem 128(1): 71-75.
- Lind P, Eaker D. (1980) Complete amino-acid sequence of a non-neurotoxic, nonenzymatic phospholipase A2 homolog from the venom of the Australian tiger snake *Notechis scutatus scutatus. Eur J Biochem* 111(2): 403-409.
- Lind P, Eaker D. (1982) Amino-acid sequence of the alpha-subunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (Oxyuranus s. scutellatus) Eur J Biochem 124(3): 441-447.
- Lipps BV. (2000) Isolation of subunits, alpha, beta and gamma of the complex taipoxin from the venom of Australian taipan snake (*Oxyuranus s. scutellatus*): characterization of beta taipoxin as a potent mitogen. *Toxicon* 38(12): 1845-1854.
- Liu XZ, Huang B, Rogers J, Yu BZ, Kumar A, Jain MK, Sundaralingam M, Tsai T-D. (1995) Phospholipase A2 engineering. Probing the structural and functional roles of N-terminal residues with site-directed mutagenesis, X-ray and NMR. *Biochemistry* 34: 7322-7334.
- Lizano S, Lomonte B, Fox JW, Gutierrez JM. (1997) Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake *Bothrops asper*. *Biochem J* 326 (Pt 3): 853-859.

- Lloret S, Moreno JJ. (1993) Oedema formation and degranulation of mast cells by phospholipase A2 purified from porcine pancreas and snake venoms. *Toxicon* 31(8): 949-956.
- Lollar P, Parker CG, Kajenski PJ, Litwiller R, David N. (1987) Degradation of coagulation proteins by an enzyme from Malayan pit viper (*Akistrodon rhodostoma*) venom. *Biochemistry* 26(24): 7627-7636.
- Low BW. (1979) Three-dimensional structure of erabutoxin b, prototype structure of the snake venom post-synaptic neurotoxins: consideration of structure and function; description of the reactive site. *Adv Cytopharmacol* 3: 141-147.
- Lullmann-Rauch R, Thesleff S. (1979) Effects of taipoxin on the ultrastructure of cholinergic axon terminals in the mouse adrenal medulla. *Neuroscience* 4: 837-841.
- Mackessy SP. (1993) Fibrinogenolytic proteases from the venoms of juvenile and adult northern Pacific rattlesnakes (*Crotalus viridis oreganus*) Comp Biochem Physiol. B: Comp Biochem 106(1): 181-189.
- Mackessy S. (2002) Biochemistry and Pharmacology of colubrid snake venoms. J Toxicol-Toxin Rev 21(1&2): 33-63.
- Magalhaes A, Monteiro MR, Magalhais HPB, Mares-Guia M, Rogana E. (1997) Thrombin-like enzyme from *Lachesis muta muta* venom: isolation and topographical analysis of its active site structure by means of the binding of amidines and guanidines as competitive inhibitors. *Toxicon* 35(10): 1549-1559.
- Magro AJ, Da Silva RJ, Ramos RRR, Cherubini AL, Hatayde MR. (2001) Intraspecific variation in the venom electrophoretic profile of recently captured *Crotalus durissus terrificus* (Laurenti, 1768) snakes. *J Venom Anim Toxins* 7(2)
- Mandel M. Higa A. (1970) Calcium-dependent bacteriphage DNA infection. J Mol Biol 53; 159
- Mann K G, Nesheim ME, Church WR, Haley P, Krishnaswamy S. (1990) Surface dependent reactions of the vitamin K dependent enzyme complexes. *Blood* 76: 1-16.
- Markland FS. (1998a) Snake venom fibrinogenolytic and fibrinolytic enzymes: an updated inventory. Registry of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. *Thrombosis and Haemostasis* 79(3): 668-674.
- Markland FS. (1998b) Snake venoms and the hemostatic system. *Toxicon* 36(12): 1749-1800.
- Marlas GB. (1982) Relationship between the pharmacological action of crotoxin and its phospholipase activity. *Eur J Biochem* 125: 157-165.
- Marsh N, Glatston A. (1974) Some observations on the venom of the rhinoceros horned viper, *Bitis nasicornis* Shaw. *Toxicon* 12(6): 621-628.
- Marsh NA. (2002) Diagnostic uses of snake venom. Haemostasis 31(3): 211-7.
- Marshall LR, Herrmann RP. (1989) Australian snake venoms and their *in vitro* effect on human platelets. *Thromb Res* 54(4): 269-275.
- Masci PP, Whitaker AN, De JJ. (1988) Purification and characterization of a prothrombin activator from the venom of the Australian brown snake, *Pseudonaja* textilis textilis. Biochem Internat 17(5): 825-835.
- Masci PP, Mirtschin PJ, Nias TN, Turnbull RK, Kuchel TR, Whitaker AN. (1998) Brown snakes (*Pseudonaja* genus): venom yields, prothrombin activator

neutralization and implications affecting antivenom usage. *Anaesthes Intens Care* 26(3): 276-281.

- Masci PP, Whitaker AN, Sparrow LG, De Jersey J, Winzor DJ, Watters DJ, Lavin MJ, Gaffney PJ. (2000) Textilinins from *Pseudonaja textilis textilis*. Characterization of two plasmin inhibitors that reduce bleeding in an animal model. *Blood Coag Fibrinolys* 11(4): 385-393.
- Mastro RH, Hall M. (1999) Protein delipidation and Precipitation by Tri-nbutylphosphate, acetone, and Methanol Treatment of Isoelectric focusing and Two-Dimensional Gel Electrophoresis. *Anal Biochem* 273(2): 313-315.
- McCarthy MP, Earnst JP, Young ET, Choe S, Stroud RM. (1986) The molecular neurobiology of the acetylcholine receptor. *Annu. Rev. Neurosci.* 9: 383-413.
- McCoy F. (1879) *Diemenia microlepidota*, small-scaled snake. Prodromus of Zoology of Victoria. Sydney, Government Printer.
- Mebs D, Chen VM, Lee C. (1979) Biochemical and pharmacological studies on Australian Snake venom toxins. Adelaide, University Union Press.
- Mebs D. (1986) Myotoxic activity of phospholipases A2 isolated from cobra venoms: neutralization by polyvalent antivenoms. *Toxicon* 24(10): 1001-1008.
- Mebs D, Ownby CL. (1990) Myotoxic components of snake venoms: their biochemical and biological activities. *Pharmacol Therapeut* 48(2): 223-236.
- Mebs D. (2001) Toxicity in animals. Trends in evolution? Toxicon 39(1): 87-96.
- Meier J, Freyvogel TA. (1980) Comparative studies on venoms of the fer-de-lance (*Bothrops atrox*), carpet viper (*Echis carinatus*) and spitting cobra (*Naja nigricollis*) snakes at different ages. *Toxicon* 18(5-6): 661-662.
- Meier J. (1986) Individual and age-dependent variations in the venom of the fer-delance *Bothrops atrox. Toxicon* 24(1): 41-46.
- Ménez A. (1998) Functinal Architectures of animal toxins: A clue to drug design? *Toxicon* 36(11): 1557-1572.
- Middlebrook JL, Kaiser IK. (1988) Immunological Relationships of Phospholipase A2 Neurotoxins from Snake Venoms. *Toxicon* 27(9): 965-977.
- Mirtschin PJ, Crowe GR, Thomas MW. (1984) Envenomation by the inland taipan, Oxyuranus microlepidotus. Med J Aust 141(12-13): 850-51.
- Moore H, Raftery MA. (1979) Studies of reversible and irreversible interaction of an alkaylating agonist with *Torpedo californica* acetylcholine receptor in membrane bound and purified states. Biochemistry 18: 1862-1867.
- Morgan FG. (1956) The Australian tapian, *Oxyuranus scutellatus scutellatus*. Venoms. Ed. Buckley, N. Washington, American Association for the Advancement of Science.
- Morrison JJP, Pearn JH, Coulter AR. (1982) The Mass of venom injected by two Elapidae: The Taipan (Oxyuranus scutellatus) and the Australian Tiger Snake (Notechis Scutatus)Toxicon 20: 739-745
- Moura-da-Silva AM, Paine MJ, Diniz MR, Theakston RD, Crampton JM. (1995) The molecular cloning of a phospholipase A2 from *Bothrops jararacussu* snake venom: evolution of venom group II phospholipase A2s may imply gene duplications. *J Mol Evol* 41(2): 174-179.
- Moura-da-Silva, Theakston RD, Crampton JM. (1996) Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: gene duplication and divergence of a common ancestor rather than convergent evolution. *J Mol Evol* 43(3): 263-269.

- Munekiyo SM, Mackessy SP. (1998) Effects of temperature and storage conditions on the electrophoretic, toxic and enzymatic stability of venom components. *Comp Biochem Physiol* 119(1): 119-127.
- Nachmansohn D. (1970) Proteins in Excitable Membranes. Science 168: 1059.
- Nakagaki T, Lin P, Kisiel W. (1992) Activation of human factor VII by the prothrombin activator from the venom of *Oxyuranus scutellatus* (Taipan snake) *Thromb Res* 65(1): 105-116.
- Nakashima K, Ogawa T, Oda N, Hattori M, Sakaki Y, Kihara H, Ohno M. (1993) Accelerated evolution of *Trimeresurus flavoviridis* venom gland phospholipase A2 isozymes. *Proc Nat Acad Sci USA* 90(13): 5964-5968.
- Nakashima K, Nobuhisa I, Deshimaru M, Nakai M, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori M, Sakaki Y, Hattori S. (1995) Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proceedings of the National Academy of Sciences of the United States of America 92(12): 5605-5609.
- Narahashi T, Moore JW, Scott WR. (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47: 965-974.
- Nawarak J, Sinchaikul S, Wu C, Liau M, Phutrakul S, Chen S. (2003) Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. *Electrophoresis* 24(16): 2838-2854.
- Neco P, Rossetto O, Gil A, Montecucco C, Gutierrez LM. (2003) Taipoxin induces Factin fragmentation and enhances release of catecholamines in bovine chromaffin cells. J Neurochem 85(2): 329-337.
- Nikai T, Komori Y. (1998) Kinin-releasing and kinin-degrading enzymes. Enzymes from Snake Venom. G. S. Bailey. Fort Collins, CO, Alaken: 287-316.
- Nirthanan S, Gopalakrishnakone P, Gwee MC, Khoo HE, Kini RM. (2003) Nonconventional toxins from Elapid venoms. *Toxicon* 41(4): 397-407.
- Nishida S, Terashima M, Shimazu T, Takasaki C, Tamiya N. (1985) Isolation and properties of two phospholipases A2 from the venom of an Australian elapid snake (*Pseudechis australis*) *Toxicon* 23(1): 73-85.
- Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, Asai M, Inayama S, Miyata T, Numa S. (1982) Primary structure of alpha subunit precursor of *Torpedo californica* acetylcholine receptor deduced from cDNA sequence. *Nature* 299: 793-797.
- Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y Hirose T, Asai M, Inayama S, Miyata T Numa S. (1983). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha subunit precursor of muscle acetylcholine receptor. *Nature* 305: 818-823.
- Noel JP, Bingman C, Deng T, Dupureur CM, Hamilton KJ, Jiang RT, Kwak JG, Sekharudu C, Sundaralingam M, Tsai MD. (1991) Phospolipase A2 engineering. X-ray strucural and funcional evidence for the interaction of lysine-56 with substrates. *Biochemistry* 30: 11801-11811
- Obara K, Fuse N, Tsuchiya T, Nonomura Y, Ménez A, Tamiya T. (1989) Sequence analysis of a cDNA encoding a erabutoxin b from the sea-snake *Laticauda semifasciata*. Nuc Acid Res 17(24): 10490.
- O'Farrell PH. (1975) High resolution two-dimensional electrophoresis of proteins. *J biol Chem* 250: 4007-4021.

- Ogawa T, Nakashima K, Nobuhisa I, Deshimaru M, Shimohigashi Y, Fukumaki Y, Sakaki Y, Haftori S, Ohno M. (1996) Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions. *Toxicon* 34(11-12): 1229-1236.
- Ohkura N, Inoue S, Ikeda K, Hayashi K. (1993) Isolation and amino acid sequence of a phospholipase A2 inhibitor from the blood plasma of *Agkistrodon blomhoffii* siniticus. J. Biochem 113(4): 413-419.
- Ohkura N, Okuhara H, Inoue S, Ikeda K, Hayashi K. (1997) Purification and characterization of three distinct types of phospholipase A₂ inhibitors from the blood plasma of the Chinese mamushi, *Agkistrodon blomhoffii siniticus*. Biochem. J. 325:527–531
- Ohno M, Ménez R, Ogawa T, Danse JM, Shimohigashi Y, Fromen C, Ducancel F, Zinn JS, Le Du MH, Boulain JC, Tamiya T, Ménez A. (1998) Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? *Prog Nuc Acid Res Mol Biol* 59: 307-364.
- Okumura K, Inoue S, Ikeda K, Hayashi K. (2002) Identification of beta-type phospholipase A(2) inhibitor in a nonvenomous snake, *Elaphe quadrivirgata*. *Arch Biochem Biophys* 408(1): 124-130.
- Oliveira ZE, Gomez MV. (1990) The effect of tityustoxin in the turnover of inositol phosphates in crude synaptosomes. *Neuropharmacology* 29(12): 1187-1190.
- Omeis IA, Hsu YC, Perin MS. (1996) Mouse and human neuronal pentraxin 1 (NPTX1): conservation, genomic structure, and chromosomal localization. *Genomics* 15;36(3):543-545.
- O'Shea M. (1996) A Guide to the Snakes of Papua New Guinea. Papua New Guinea., Independent Publishing Group Pty.
- Ouyang C, Teng CM, Huang TF. (1992) Characterisation of snake venom components acting on blood coagulation and platelet function. *Toxicon* 30: 945-966.
- Page RDM, Charleston MA. (1996) From Gene to Organismal Phylogeny; Reconciled Trees and the Gene Tree/Species Tree Problem. *Mol phylogen Evol* 7(2):231-240
- Page RDM. (2000) Extracting Species Trees from complex gene trees: Reconciled Trees and Vertebrate Phylogeny. *Mol Phylog Evol* 14(1): 89-106
- Patton WF. (1999) Proteome analysis II. Protein subcellular redistribution: linking physiology to genomics via the proteome and separation technologies involved. J Chromatog B 722: 203-223.
- Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A. (2000) The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. *Embo J* 19(16): 4204-4215.
- Pearn JH, Covacevich J, Charles N, Richardson P, 1994. Snakebite in herpetologists. Med J Aust 161(11-12): 706-708.
- Pennacchio LA, Rubin EM. (2003). Comparative genomic tools and databases: providing insights into the human genome. *J Clin Invest* 111(8): 1099-1106.
- Pennington SR, Dunn MJ. (2001) Proteomics from protein sequence to function. Oxford, BIOS Scientific Publishers Limited.

Peters W. (1867) Pseudechis scutellatus. Mber dt Akad wiss Berl: 710-711.

Pillet L, Trémeau O, Ducancel F, Drevet P, Zinn-Justin S, Pinkasfeld S, Boulain JC, Ménez A. (1993) Genetic engineering of snake toxins. Role of invariant residues in the structural and functional properties of a curaremimetic toxin, as probed by site-directed mutagenesis. J Biol Chem 268(2): 909-916.

- Pirkle H, Marsh N. (1992) Nomenclature of exogenous hemostatic factors. *Toxicon* 30(12): 1513-1514.
- Pirkle H. (1998) Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committee's Registry of Exogenous Hemostatic Factors. *Thromb Haemostasis* 79: 675-683.
- Pitney WR, Bell WR, Bolton G. (1969) Blood fibrinolytic activity during Arvin therapy. Br. J. Haematol 16: 165-171
- Politoff A, Blitz A, Rose S. (1975) Incorporation of Acetylcholinesterase Into Synaptic Vesicles is Associated with Blockade of Synaptic Transmission. *Nature* 256: 324.
- Ponraj D., Gopalakrishnakone P. (1995) Morphological changes induced by a generalised myotoxin (myoglobin-inducing toxin) from the venom of pseudechis australis (king brown snake) in skeletal muscles and kidney of mice. *Toxicon* 33(11): 1453-1467.
- Ponraj D., Gopalakrishnakone P. (1996) Establishment of an animal model for myoglobin urea by use of a myotoxin form psuedechis australis (king brown snake) venom in mice. *Lab. Anim. Sci.* 46(4): 393-398.
- Poran NS, Coss RG, Benjamini E. (1987) Resistance of California ground squirrels (*Spermophilus beecheyi*) to the venom of the northern Pacific rattlesnake (*Crotalus viridis oreganus*): a study of adaptive variation. *Toxicon* 25(7): 767-777.
- Possani LD, Martin BM, Yatani A, Mochca-Morales J, Zamudio FZ, Gurrola GB, Brown AM. (1992a) Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. *Toxicon* 30(11): 1343-1364.
- Possani LD, Mochca MJ, Amezcua J, Martin BM, Prestipino G, Nobile M. (1992b) Anionic currents of chick sensory neurons are affected by a phospholipase A2 purified from the venom of the taipan snake. *Biochim Biophys Acta* 1134(3): 210-216.
- Ramirez GA, Fletcher Jr, PL, Possani LD. (1990) Characterization of the venom from *Crotalus molossus nigrescens Gloyd* (black tail rattlesnake): isolation of two proteases. *Toxicon* 28(3): 285-297.
- Ramlau J, Bock E. (1979) Production of antivenom against detoxified taipoxin and immunochemical analysis of the alpha, beta and gamma subunits. *Toxicon* 17(1): 43-54.
- Rao VS, Kini MR. (2002) Pseutarin C, a Prothrombin Activator from *Pseudonaja textilis* Venom: Its Structural and Functional Similarity to Mammalian Coagulation Factor Xa-Va Complex. *Thromb Haemostas* 88(4): 611-619.
- Rao VS, Joseph JS, Kini RM. (2003) Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. *Biochem J* 369(Pt 3): 635-642.
- Roberts MF. (1996) Phospholipases: structural and functional motifs for working at an interface. *FASEB J* 10: 1159-1172.
- Rockel D, Korn W, Kohn AJ. (1995) Manual of the living Conidac. Verlag Wiesbaden.
- Rosenberg P, Ghassemi A, Condrea E, Dhillon D, Yang CC. (1989) Do chemical modifications dissociate between the enzymatic and pharmacological activities of beta bungarotoxin and notexin? *Toxicon* 27(2): 137-159.
- Rosing J, Tans G. (1988). Meizothrombin, a major product of factor Xa-catalyzed prothrombin activation. *Thromb Haemostas* 60(3): 355-360.

- Rowan EG, Harvey AL, Takasaki C, Tamiya N. (1989) Neuromuscular effects of three phospholipases A2 from the venom of the Australian king brown snake *Pseudechis australis. Toxicon* 27(5): 551-560.
- Russell FE, Emory JA, Long TE. (1960) Some properties of rattlesnake venom following 26 years storage. *Proc Soc Exp Biol Med Hyg* 103: 737.
- Russell FE, Eventov R. (1964) Lethality of crude and lyophilized *Crotalus* venom. *Toxicon* 2: 81-82.
- Russell FE, Sullivan JB, Egen NB, Jeter WS, Markland FS, Winger WA, Bar-Or D. (1985) Preparation of a new antivenin by affinity Chromatography. *American J of Trop Med Hyg* 34(1): 141-150.
- Sambrook J, Fritch ER, Maniatis T. (1989) Molecular Cloning A laboratory manual. Cold Spring Harbour, Cold Spring Harbour Laboratory Press.
- Samel M, Subbi J, Siigur J, Siigur E. (2002) Biochemical characterisation of fibrinogenolytic serine proteinases from *Vipera lebitena* snake venom. *Toxicon* 40: 51-54.
- Sato S, Tamiya N. (1971) The amino acid sequences of erabutoxins, neurotoxic proteins of sea-snake (*Laticauda semifasciata*) venom. *Biochem J* 122(4): 453-461.
- Scanlon JD, Lee MSY, Archer M. (2003) Mid-tertiary elapid snakes (Squamat, Colubroidea) from Riversleigh, northern Australia; early steps in a continent-wide adaptive radiation. *GEOBIOS* 36: 573-601.
- Schagger H, von Jagow G. (1987) Tricine-Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. *Anal Biochem* 166: 368-379.
- Scott DL. (1997) Phospholipase A2: Structure and catalytic properties. Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism. Ed. Kini RM, Chichester, Wiley: 97-128.
- Serrano SM, Hagiwara Y, Murayama N, Higuchi S, Mentele R, Sampaio CA, Camargo AC, Fink E. (1998) Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase (KN-BJ) from the venom of *Bothrops jararaca*, and molecular cloning and sequence analysis of its cDNA. *Eur J Biochem* 251(3): 845-853.
- Serrano, SMT, Mentele R, Sampaio CAM, Fink E. (1995) Purification, characterization, and amino acid sequence of a serine proteinase, PA-BJ, with platelet-aggregating activity from the venom of *Bothrops jararaca*. *Biochemistry* 34(21): 7186-7193.
- Servent D, Dietrich-winckler V, Hu H, Kessler P, Drevet P, Bertrand D, Ménez A. (1997) Only snake Curaremimetic toxins with a Fifth disulfide Bond Have High Affinity for the Neuronal alfa-7 Nicotinic Receptor. J Biol Chem 272(39): 24279-24286.
- Siigur E, Samel M, Tonismagi K, Subbi J, Reintamm T, Siigur J. (1998) Isolation, properties and N-terminal amino acid sequence of a factor V activator from *Vipera lebetina* (Levantine viper) snake venom. *Biochim Biophys Acta* 1429(1): 239-248.
- Shine S, Covacevich J. (1983) Ecology of highly venomous snakes; the Australian genus Oxyuranus (elapidae) J. Herpetol 17: 60-69.
- Singh SB, Armugam A, Kini RM, Jeyaseelan K. (2000) Phospholipase A(2) with platelet aggregation inhibitor activity from *Austrelaps superbus* venom: protein purification and cDNA cloning. *Arch Biochem Biophys* 375(2): 289-303.
- Sitprija V, Chaiyabutr N. (1999) Nephrotixicity in snake envenomation. *Nat. Toxins* 8: 271-277.

- Six DA, Dennis EA. (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. *Biochim Biophys Acta* 1488: 1-19.
- Slater KR. (1956) On the New Guinea taipan. Mem Nat. Mus Victoria 20: 1-5.
- Slowinski JB, Knight A, Rooney AP. (1997) Inferring species trees from gene trees: A phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. *Mol Phylogen Evol* 8(3): 349-362.
- Slowinski JB, Keogh JS. (2000) Phylogenetic relationships of elapid snakes based on cytochrome b mtDNA sequences. *Mol Phylogen Evol* 15(1): 157-164.
- Slowinski JB, Lawson R. (2002) Snake phylogeny: evidence from nuclear and mitochondrial genes. *Mol Phylogen Evol* 24(2): 194-202.
- Soares AM, Anzaroni-pedrosa LH, Fontes MRM, Da silva RJ, Giglio JR. (1998) Polyacrylamide gel electrophoresis as a tool for the taxonomic identification of snakes from the Elapidae and Viperidae families. J. Venom. Anim. Toxins 4: 137-142.
- Sobel A, Weber M, Changeux JP. (1977) Large scale purification of the acetylcholine receptor protein in its membrane bound and detergent extracted forms from *Torpedo marmorata* electric organ. *Eur J Biochem* 80: 215-224.
- Sosa BP, Alagon AC, Martin BM, Possani LD. (1986) Biochemical characterization of the phospholipase A2 purified from the venom of the Mexican beaded lizard (*Heloderma horridum horridum wiegmann*). Biochemistry 25(10): 2927-2933
- Southern DA, Callanan VI, Gordon GS. (1996) Severe envenomation by the taipan (Oxyuranus scutellatus) Med J Aust 165(11-12): 662-664.
- Speijer H, Govers-Riemslag J, Zwall RFA, Rosing J. (1986) Prothrombin activation by an activator from the venom of *Oxyuranus scutellatus* (Taipan snake) *J Biol Chem* 261(28): 13258-13267.
- Stocker KF. (1994) Inventory of exogenous hemostatic fators affecting the prothrombin activation pathways. *Thromb. Haemostasis* 71: 257-260.
- Stocker KF. (1998) Research, diagnostic and medicinal uses of snake venom enzymes. Fort Collins, CO, Alaken.
- Stoor GM. (1964). Some aspects of the geography of Australian reptiles. Senckenbergiana Biologica 45: 577-589.
- Strausberg R, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA. (2002) Mammalian Gene Collection Program Team: Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99: 16899-16903.

- Strong PN, Goerke J, Oberg SG, Kelly RB. (1976) Beta-Bungarotoxin, a pre-synaptic toxin with enzymatic activity. *Proc Natl Acad Sci USA* 73(1): 178-182.
- Subburaju S, Kini RM. (1997) Isolation and purification of superbins I and II from *Austrelaps superbus* (copperhead) snake venom and their anticoagulant and antiplatelet effects. *Toxicon* 35(8): 1239-1250.
- Sugihara HN, Moriura M, Kaimya K, Tanaka T. (1972) Enzymochemical studies on snake venoms 1. Changes in biologic and enzymatic activites of snake venoms on long standing at room temperature. Jpn J Bact 27: 47.
- Sun MZ, Ding L, Ji YP, Zhao DQ, Liu SY, Ni JZ. (1999) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of phospholipase A2 and fibrinolytic enzyme, two enzymes obtained from Chinese Agkistrodon blomhoffii Ussurensis venom. Rap Commun Mass Spectrometry 13(3): 150-155.
- Sundell IB, Ranby M, Zuzel M, Robinson KA, Theakston RD. (2003) In vitro procoagulant and anticoagulant properties of Naja naja naja venom. Toxicon 42(3): 239-247.
- Sutherland SK. (1975) Treatment of snake bite in Australia. Some observations and recommendations. *Med J Aust* 1(2): 30-32.
- Sutherland SK. (1976) Renal failure after snake bite. Med J Aust 2(18): 698.
- Sutherland SK. (1979) Australian venoms and care of the envenomed patient. MD Thesis. The University of Melbourne.
- Sutherland SK, Tibballs J. (2001) Australian Animal Toxins. The creatures, their toxins and care of the poisoned patient. Melbourne, Oxford University Press. pp 10 -15.
- Suttie JW, Jackson CM. (1977) Prothrombin structure, activation and biosynthesis. *Physiol Rev* 57: 1-65.
- Swe TN, Kyaw KM, Win H, Win K, Htse TT. (1997) Russel's viper venom fractions and nephrotoxicity. Southeast Asian J Trop. Med. Public Health. 28, 657-663.
- Takacs Z, Wilhelmsen KC, Sorota S. (2001) Snake alpha-Neurotoxin Binding Site on the Egyptian Cobra (*Naja haje*) Nicotinic Acetylcholine Receptor Is Conserved. *Mol Biol Evol* 18(9): 1800-1809.
- Takasaki C, Tamiya N. (1985) Isolation and amino acid sequence of a short-chain neurotoxin from an Australian elapid snake, *Pseudechis australis*. Biochem J 232(2): 367-371.
- Takasaki C. (1989) Amino acid sequence of a long-chain neurotoxin homologue, Pa ID, from the venom of an Australian elapid snake, *Pseudechis australis. J Biochem* 106(1): 11-16.
- Takasaki C, Sugama A, Yanagita A, Tamiya N, Rowan EG, Harvey AL. (1990a) Effects of chemical modifications of Pa-11, a phospholipase A2 from the venom of Australian king brown snake (*Pseudechis australis*), on its biological activities. *Toxicon* 28(1): 107-117.
- Takasaki C, Suzuki J, Tamiya N. (1990b) Purification and properties of several phospholipases A2 from the venom of Australian king brown snake (*Pseudechis* australis) Toxicon 28(3): 319-327.
- Takasaki C, Yutani F, Kajiyashiki T. (1990c) Amino acid sequences of eight phospholipases A2 from the venom of Australian King brown snake, *Pseudechis* australis. Toxicon 28(3): 329-339.
- Tamiya T, Lamouroux A, Julien JF, Grima B, Mallet J, Fromageot P, Ménez A. (1985) Cloning and sequence analysis of the cDNA encoding a snake neurotoxin precursor. *Biochimie* 67(2): 185-189.

- Tan NH, Ponnudurai G. (1990) A comparative study of the biological properties of Australian Elapid venoms. *Comp Biochem Physiol* 97: 99-106.
- Thomson DF. (1933) The taipan, Australia's largest and most aggressive snake. A description of the capture of the first live specimen. *Illustrated London News* 23 Dec: 1048-1049.
- Thwin MM, Gopalakrishnakone P. (1998) Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991-1997). *Toxicon* 36(11):1471-1482
- Thwin M, Satish RL, Chan STF, Gopalakrishnakone P. (2002) Functional site of endogenous phospholipase A2 inhibitor from python serum. *Eur J Biochem* 269: 719-727.
- Tibballs J. (1998) The cardiovascular, coagulation and haematological effects of tiger snake (*Notechis scutatus*) prothrombin activator and investigation of release of vasoactive substances. *Anaesth Int Care* 26(5): 536-547.
- Torres AM, Wong HY, Desai M, Moochhala S, Kuchel PW, Kini RM. (2003) Identification of a novel family of proteins in snake venoms. Purification and structural characterization of nawaprin from *Naja nigricollis* snake venom. *J Biol Chem* 278(41): 40097-40104.
- Towbin H, Staehelin T, Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellose sheets: Procedure and some applications. *Proc Natl Acad Sci USA* 75: 4350-4354
- Tremeau O, Lemaire C, Drevet P, Pinkasfeld S, Ducancel F, Boulain JC, Mnez A. (1995) Genetic engineering of snake toxins. The functional site of erabutoxin a, as delineated by site-directed mutagenesis, includes variant residues. *J Biol Chem* 270: 9362-9369.
- Trevett AJ, Lalloo DG, Nwokolo N, Kevau IH, Warrell DA (1994) Analysis of referral letters to assess the management of poisonous snake bite in rural Papua New Guinea. *Trans Roy Soc Trop Med Hyg* 88(5): 572-574.
- Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH, Theakston RD, Warrell DA. (1995) The efficacy of antivenom in the treatment of bites by the Papuan taipan (Oxyuranus scutellatus canni). Trans Roy Soc Trop Med Hyg 89(3): 322-325.
- Trinca JC. (1969) Report of recovery from taipan bite. Med J Aust 1(10): 514-516.
- Tsai IH, Liu HC, Chang T. (1987) Toxicity domain in presynaptically toxic phospholipase A2 of snake venom. *Biochim Biophys Acta* 916(1): 94-99.
- Tsetlin VI, Karlsson E, Utkin Y, Pluzhnikov KA, Arseniev AS, Surin AM, Kondakov VV, Bystrov VF, Ivanov VT, Ovchinnikov YA. (1982) Interaction surfaces of neurotoxins and acetylcholine receptor. *Toxicon* 20(1): 83-93.
- Tsetlin V. (1999) Snake venom alpha neurotoxins and other 'three-finger' proteins. *Eur J Biochem* 264(2): 281-286.
- Tu A, Dekker M. (1991) Reptile Venoms and Toxins: Handbook of Natural Toxins volume 5. Colorado, Marcel Dekker inc.
- Tu AT. (1996) Overview of snake venom chemistry. Adv Exper Med Biol 391: 37-62.
- Tzartox SS, Changeux JP. (1983) High affinity binding of alpha bungarotoxin to the purified alpha subunit to its 27 000 dalton proteolytic peptide from *Torpedo* marmorata. requirement for sodium dodecyl sulfate. *EMBO J.* 2: 381-387.
- Tzeng MC, Yen CH, Hseu MJ, Tseng CC, Tsai MD, Dupureur CM. (1995) Binding proteins on synaptic membranes for crotoxin and taipoxin, two phospholipases A2 with neurotoxicity. *Toxicon* 33(4): 451-457

- Valente RH, Dragulev B, Perales J, Fox JW, Domont GB. (2001) BJ46a, a snake venom metalloproteinase inhibitor. Isolation, characterization, cloning and insights into its mechanism of action *Eur. J. Biochem.* 268: 3042-3052.
- Valentin E, Lambeau G. (2000a). Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. *Biochim Biophys* Acta 1488(1-2): 59-70.
- Valentin E, Lambeau G. (2000b) What can venom phospholipases A(2) tell us about the functional diversity of mammalian secreted phospholipases A(2)? *Biochim Biophys Acta* 82(9-10): 815-831.
- van der Weyden L, Hains PG, Broady KW. (2000) Characterisation of the biochemical and biological variations from the venom of the death adder species (*Acanthophis antarcticus, A. praelongus* and *A. pyrrhus*) Toxicon 38(12): 1703-1713.
- Van der Wiele FC, Atsma W, Dijkman jr, Schreurs AMM, Stotboom AJ, De Haas GH, 1988. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2.
 2. Transformation of soluble phospholipase A2 into a highly penetrating "membrane-bound" form. *Biochemistry* 27(5): 1688-16894.
- Van-Scharrenburg GJM, Puijk WC, De Haas GH, Slotboom AJ. (1983) Semisynthesis of phospholipase A2. The effect of substitution of amino acid residues at position 6 and 7 in bovine and porcine pancreatic phospholipases A2 on catalytic and substrate binding properties. *Eur J Biochem* 133: 83-89.
- van Tilbeurgh H, Sarda L, Verger R, Cambillau C, 1992. Nature 359: 159-162.
- Villegas LE, Aguirre E, Zavaleta A. (1993) [Effects of lyophilization on four biological activities of Bothrops atrox venom (Serpentes: Viperidae)]. *Revista de Biologia Tropical* 41(3B): 851-853.
- Volwork JJ, De Haas GH. (1982) Pancreatic phospholipase A2: a model for membranebound enzymes? Molecular Biology of lipid-Proein Interactions. Josy PC, Griffith OH, New York, Wiley-interscience: 69-149.
- Walker FJ, Woen WG, Esmon CT. (1980) Characterisation of the Prothrombin Activator from the Venom of Oxyuranus scutellatus scutellatus (Taipan Venom) Biochemistry 19: 1020-1023.
- Walker NP, Bradlow BA, Atkinson PM. (1982) A rapid chromogenic method for the determination of prothrombin precursor in plasma. *Am J Clin Path* 78(5):777-780.
- Walkinshaw MD, Saenger W, Maelicke A. (1980) Three-dimensional structure of the "long" neurotoxin from cobra venom. *Proc Nat Acad Sci USA* 77(5): 2400-2404.
- Wang YM, Lu PJ, Ho CL, Tsai IH. (1992) Characterization and molecular cloning of neurotoxic phospholipases A2 from Taiwan viper (Vipera russelli formosensis) Eur J Biochem 209(2): 635-641.
- Wang S, Barile M, Wang G. (2001a) Disparate Role of Na Channel D2-S6 Residues in Batrachotoxin and Local Anaesthetic Action. *Mol Pharmacol* 59(5): 1100-1107.
- Wang Y, Wang S, Tsai I. (2001b) Serine protease isoforms of *Deinagkistrodon acutus* venom: cloning, sequencing and phylogenetic analysis. *Biochem J* 254: 161-168.
- Wang WJ, Huang TF. (2002) Purification and characterization of a novel metalloproteinase, acurhagin, from Agkistrodon acutus venom. Thromb Haemostas 87(4): 641-650.

Wang WS, Jibin, S, Nimtz M, Deckwer W, Zeng A. (2003) Protein identification from two dimensional gel electrophoresis analysis of *Klebsiella pneumonia* by combined use of mass spectrometry data and raw genome sequences. *Prot Sci* 1:6.
Warburg O, Christrian W. (1942) *Biochemistry. Z.* 310: 384-421.

- Weber M, Changeux JP. (1974) Binding of *Naja nigricollis* (3H)alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. I. Binding of the tritated alpha-neurotoxin in the absence of effector. *Mol Pharm* 10(1): 1-14.
- White J. (1981) Ophidian envenomation: A South Australian perspective. Records of the Adelaide Childrens Hospital. pp 311-421.
- Wickramaratna JC, Fry BG, Aguilar MI, Kini RM, Hodgson WC. (2003a) Isolation and pharmacological characterization of a phospholipase A2 myotoxin from the venom of the Irian Jayan death adder (*Acanthophis rugosus*) Brit J Pharmacol 138(2): 333-342.
- Wickramaratna JC, Fry BG, Hodgson WC. (2003b) Species-dependent variations in the *in vitro* myotoxicity of death adder (*Acanthophis*) venoms. *Toxicolal Sci* 74(2): 352-360.
- Wilkins MR, Gasteiger E, Gooley AA, Herbert BR, Molloy MP, Nbinz P, Ou K, Sanchez J, Bairoch A, Williams KL, Hochstresser DF. (1999) High throughput Mass Spectrometric Discovery of Protein Post-translation Modifications. J Mol Biol 289: 645-657.
- Willemse GT, Hattingh J. (1985) Effectof drying and storage on electrophoretic properties of venom ofrom puff adders (*Bitis arietans*) and cape cobras (*Naja nivea*) *Herpetologica* 36: 170-74.
- Williams V, White J, Schwaner TD, Sparrow A. (1988) Variation in venom proteins from isolated populations of tiger snakes (*Notechis ater niger, N. scutatus*) in South Australia. *Toxicon* 26(11): 1067-1075.
- Williams V, White J. (1990) Variation in venom composition and reactivity in two specimens of yellow-faced whip snake (*Demansia psammophis*) from the same geographical area. *Toxicon* 28(11): 1351-1354.
- Williams V, White J. (1992) Variation in the composition of the venom from a single specimen of *Pseudonaja textilis* (common brown snake) over one year. *Toxicon* 30(2): 202-206.
- Williams V, White J, Mirtschin PJ. (1994) Comparative study on the procoagulant from the venom of Australian brown snakes (*Pseudonaja* spp.) Toxicon 32(4): 453-459.
- Williams D, Bal B. (2003) Envenomation in rural Papua New Guinea. Ann ACTM 4(1): 6-9.
- Willmott N, Gaffney P, Masci P, Whitaker A. (1995) A novel serine protease inhibitor from the Australian brown snake, *Pseudonaja textilis textilis*: Inhibition Kinetics. *Fibrinolysis* 9: 1-8.
- Wilson S, Swan R. (2003) *Reptiles of Australia* (Princeton University Press Princeton & Oxford, Oxford
- Winkler FK, D'Arcy A, Hunziker W. (1990) Structure of human pancreatic lipase. *Nature* 343: 771-774.
- Woodburne MO, Case JA. (1996) Dispersal, variance, and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. *J Mamm Evol* 3: 121-161.
- Wüster W, Thorpe RS. (1994) Naja siamensis, a cryptic species of venomous snake revealed by mtDNA sequencing. Experientia 50(1): 75-79.
- Wüster W, Daltry JC, Thorpe RS. (1999) Can diet explain intra-specific venom variation? *Toxicon* 37: 253-258.

- Yamazaki Y, Koike H, Sugiyama Y, Motoyoshi K, Wada T, Hishinuma S, Mita M, Morita T. (2002) Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. *Eur J Biochem* 269(11): 2708-27015.
- Yang CC, Chang LS, Wu FS. (1991) Venom constituents of *N. s. scutatus* (Australian tiger snake) from differing geographic regions. *Toxicon* 29(11): 1337-1344.
- Yang C, Chang L. (1999) Biochemistry and molecular Biology of Snake Neurotoxins. J Chin Chem Soc 46(3): 319-333.
- Yu L, Dennis EA. (1993) Effect of polar head groups on the interactions of phospholipase A2 with phosphonate transition-state analogues. *Biochemistry* 32(38): 10185-10192.
- Yuan Y, Jackson SP, Mitchell CA, Salem HH. (1993) Purification and characterisation of a snake venom phospholipase A2: a potent inhibitor of platelet aggregation. *Thromb Res* 70(6): 471-481.
- Zamudio FW, Kathleen M, Martin BM, Possani LD, Chiappinelli VA. (1996) Two Novel alpha Neurotoxins Isolated from the Taipan Snake exhibit Reduced Affinity for Nicotinic Acetylcholine Receptors in Brain and Skeletal Muscle. *Biochemistry* 35: 7910-7916.
- Zhang Y, Xiong Y, Bon C. (1995) An activator of blood coagulation factor X from the venom of *Bungarus fasciatus*. *Toxicon* 33(10): 1277-1288.
- Zhang Y, Wisner A, Maroun RC, Choumet V, Xiong Y, Xiong, Bon C. (1997) *Trimeresurus stejnegeri* snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling. *J Biol Chem*272(33): 20531-20537.
- Zhou XH, Yang D, Zhang JH, Liu CM, Lei KJ. (1989) Purification and N-terminal partial sequence of anti-epilepsy peptide from venom of the scorpion *Buthus martensii Karsch. Biochem J* 257(2): 509-517.

Appendices

Appendix I: Families of Snakes and the species found within them.

Summary and excerpt copied from EMBL reptile database. http://www.embl-heidelberg.de/~uetz/LivingReptiles.html

Family Elapidae (Cobras, Kraits, Coral Snakes) (including Hydrophiidae, (Sea Snakes))

(Non marine forms: Africa, Southern Asia; North, Central, and South America. Marine forms: all continents except Europe) *Micrurus fulvius, Micrurus spixii, Micrurus sp., Acanthophis antarticus (*Common Death Adder), *Naja* (Cobra, Central Asia), *Hydrophis klossi, Laticauda* (false sea snake, Asian), *Bungarus* (Krait) *Demansia* (Whip snake),

Australian: Pseudechis (Black snake), Pseudechis australis (King Brown snake), Pseudonaja (Brown Snake), Oxyuranus (Taipan + PNG), Notechis (Tiger snake), Pseudonaja inframacula (Peninsula Brown Snake), Austrelaps (copperhead)

Colubridae <u>Colubridae</u>. (Colubrids) --(Worldwide; Colubrinae and Natricinae most widespread, but neither in Madagascar)

- Natricinae (In US: Clonophis, Nerodia, Regina, Seminatrix, Storeria, Thamnophis, Tropidoclonion.) Nerodia erythrogaster, Nerodia harteri, Thamnophis proximus, Thamnophis marcianus, Storeria dekayi
- Xenodontinae (in US: Carphophis, Contia, Diadophis, Farancia, Heterodon, Hypsiglena, Coniophanes, Rhadinaea, Tantilla, Trimorphodon) Heterodon platyrhinos, Diadophis punctatus, Tantilla gracilis, Hypsiglena torquata, Leimadophis epinephalus, Ninia psephota, Leptodeira annulata, Imantodes inornatus
- Colubrinae (in US: Arizona, Coluber, Drymarchon, Drymobius, Elaphe, Masticophis, Opheodrys, Pituophis, Salvadora, Cemophora, Lampropeltis, Rhinocheilus, Stilosoma, Chilomeniscus, Chionactis, Conopsis, Ficimia, Gyalopion, Sonora, Stenorrhina) Arizona elegans, Rhinocheilus lecontei, Elaphe guttata, Elaphe obsoleta, Pituophis melanoleucus, Lampropeltis triangulum, Lampropeltis getulus, Coluber mentovarius, Masticophis flagellum, Salvadora grahamiae, Ficimia streckeri, Sonora semiannulata, Chrysopelea paradisi,

• Homalopsinae (Rear-fanged watersnakes; Asia) Enhydris polylepis

Lycodontinae (Africa, Asia) Psammophis sp.

Viperidae (Vipers and Pit Vipers)

- Viperinae (Non-pit vipers) (Europe, Africa, East Asia, Southern Asia) Bitis gabonica
- Crotalinae (Pit vipers) (East Asia, Southern Asia, North, Central, and South America) Agkistrodon contortrix, Bothrops nasuta, Bothrops lateralis, Sistrurus catenatus, Crotalus atrox

The Caenophidia are considered the most "advanced" snakes. Within the colubroids, the Viperidae and Elapidae are two generally accepted, well-supported groups. Relationships with the Colubridae are a mess. Many characters used at family/subfamily level are derived from maxilla and hemipenis. A recent molecular study does support the scolecophidians as most basal; booids intermediately placed but paraphyletic; colubroids monophyletic except that *Acrochordus* is within booids; *Atractaspis* is within Elapidae; colubrids not obviously monophyletic. (Heise *et al.*, 1995).

Appendix II; Summary of common and scientific names of Australian snakes.

Australian snakes	
Common name	Scientific name
Inland taipan	Oxyuranus microlepidotus
Common brown snake	Pseudonaja textilis
Taipan	Oxyuranus scutellatus
Reevesby Is. tiger snake	Notechis ater niger
Common tiger snake	Notechis scutatus
Western tiger snake	Notechis ater occidentalis
Beaked sea snake	Enhydrina schistosa
Chappell Is. tiger snake	Notechis ater serventyi
Common death adder	Acanthophis antarcticus
Western brown snake	Pseudonaja nuchalis
Lowland copperhead	Austrelaps superbus
Dugite	Pseudonaja affinis
Stephens banded snake	Hoplocephalus stephensi
Rough scaled snake	Tropidechis carinatus
Spotted black snake	Pseudechis guttatus
King brown snake	Pseudechis australis
Colletts snake	Pseudechis colletti
Red bellied black snake	Pseudechis porphyriacus
Small-eyed snake	Rhinoplocephalus nigrescens
Black whip snake	Demansia papuensis and Demansia vestigiata

ž

Appendix I	II; Table de	scribing m	ajor components characterised in snake venoms and examples within Oxyuranus
Class of toxin	1	1	Notes
Procoagulants	Effect on factor Xa		The conversion of prothrombin to thrombin by factor Xa requires the cleavage of two peptide bonds within the prothrombin molecule. Yet, the enzyme responsible for prothrombin activation, factor Xa, is a poor activator of prothrombin, and requires cofactors. This occurs in the form of a complex consisting of factor Xa-factor Va bound to negatively charged phospholipids in the presence of calcium ions. In view of this mechanism, prothrombin activators were classified into four groups (A, B, C and D) based on the stimulation of venom prothrombin converting activity by the accessory components of the prothrombinase complex ie Ca^{2+} , negatively charged phospholipids or factor Va (Denson, 1976). The blood disruption from the venoms of the Australian elapids fall into either group C or group D (Tu and Dekker, 1991).
		Group C	The prothrombin converting activities of this group are stimulated by factor Va and acidic/negatively charged phospholipids and calcium ions. These enzymes are present in venoms of genera including <i>Notechis</i> (Tans <i>et al.</i> , 1985, Williams & White, 1989), <i>Austrelaps, Tropidechis, Pseudechis</i> and <i>Hoplocephalus</i> (Williams <i>et al.</i> , 1994). Fohlman, et al., (1979) reported <i>O. microlepidotus</i> venom contained a prothrombin activator. Although further studies have stated the activity of this venom is not medically important (Sutherland and Tibbals, 2001).
		Group D	These come from the venoms of some species of <i>Pseudonaja</i> (Masci, <i>et al.</i> , 1988, Stocker <i>et al.</i> , 1994, Williams <i>et al.</i> , 1994, Masci, <i>et al.</i> , 2000) and <i>Oxyuranus</i> (taipan) (Marsh <i>et al.</i> , 1997, Speijer, <i>et al.</i> , 1986, Walker, <i>et al.</i> , 1980). As an example, the prothrombin activator from O . <i>scutellatus</i> O . <i>s. scutellatus</i> was partially characterised by Walker <i>et al.</i> (1980) and consisted of either two separate enzymes or a single enzyme with two active sites. It contained a very potent converter of prothrombin to thrombin in the absence of all other known clotting factors (Denson, 1969). A prothrombin activator from this species was further purified by Speijer <i>et al</i> (1986), named scutelarin (EC 3.4.21.60) and confirmed the prothrombin activator as having an approximate molecular mass of 300kDa. It was composed of subunits of molecular mass 110kDa and 80kDa and two disulphide linked polypeptides each of 30 kDa molecular mass. The multimeric protein consists of a factor XI like enzyme and a factor Va like cofactor. It has been demonstrated that <i>O. seutellatusO. s. scutellatus</i> venom possesses an activator of factor VII (Nakagaki, <i>et al.</i> , 1992).
	Effect on factor V		The proteolytic activity required in the mechanism of coagulation is augmented by cofactors: tissue factor, factor VIIIa, and factor Va. These catalyse the proteolytic activity of factor VIIa, factor IXa and factor Xa, respectively. Two of these cofactors, factor VIIIa and factor Va, circulate in plasma as procofactors with little if any activity and require proteolytic activation for the full expression of their cofactor activity. Physiologically, proteolytic activation of factor VII and factor VI and factor V is mediated by low amounts of either thrombin alone or factor Xa in the presence of calcium and a negatively charged phospholipid surface. Some snake venom proteases (<i>Vipera russellii</i> (Russell's viper) and <i>Bothrops atrox</i> (fer-de-lance) have been seen to specifically activate factor V by limited proteolysis and thus contribute to hypercoagulable states after envenomation (Boffa and Boffa, 1974).
Effects on platelets			Platelets are small and numerous and the primary 'duties' of platelets are the maintenance of endothelial integrity and haemostasis (Subburaju and Kini, 1997, Singh <i>et al.</i> , 2000). Platelets may interact with prothrombin activators to increase their effectiveness

Appendices

			(Furihata, <i>et al.</i> , 2001, Speijer, <i>et al.</i> , 1987) but generally direct effects of the prothrombin activators on platelets have not been reported. Platelet responses are several and it is these changes that allow for quick and conclusive assays of pharmacologic action. One of the earliest responses to stimulation is shape change and several types of 'stickiness' responses occur -adhesion, aggregation, and agglutination (Marshall and Herrmann, 1989). Stimulators of platelets may act on receptors that are coupled to Ca^{2+} phospholipase C and inositol triphosphate (Feinstein and Helenda, 1988).
Phospholipase			
	Neurotoxic		
	Туре І		Isolated from <i>Elapidae</i> and <i>Hydrophidai</i> snake venoms and mammalian pancreas. They have been characterised by the presence of a disulphide bridge between cysteine residues 11 and 78.
	Type II		Present in venoms of <i>Crotalidae</i> and <i>Viperidae</i> species. These are characterised by additional amino acids residues at their carboxyl extremity and a disulphide bridge between cysteine residues characteristic of phospholipases A2 from class I (Bon, <i>et al.</i> , 1986, Fraenkel-Conrat, 1982).
	Type III		These have been isolated from lizard (Gila monster) and bee (Apis mellifera) venoms. Data suggests that a generalisation is not applicable to group III as this PLA ₂ has been identified in human kidney, heart, liver and skeletal muscle (Valentin and Lambeau, 2000). The identification of type III PLA ₂ in human tissue implies a novel physiological role for this enzyme (Arni and Ward, 1996; Kini, 1997, Kuchler, <i>et al.</i> , 1989, Sosa, <i>et al.</i> , 1986).
		Type 1 + II neurotoxins	Phospholipase A_2 enzymes are key toxins and highly abundant and is the area where the bulk of the research of Australian elapids has been concentrated (Armugam <i>et al.</i> 2000). The majority of Australian elapid PLA ₂ s are basic, 118 amino acids long, have seven disulphide bonds and molecular weights around 13 kDa. Despite the homology there is a wide range of enzymatic and toxic activity found in Australian elapid PLA ₂ (Dunn and Broady, 2001, Brunie, <i>et al.</i> , 1985). Neurotoxins block neuromuscular nerve transmission either pre- or post-synaptically.
		Pre-synaptic Neurotoxins (β)	Beta neurotoxins keep nerve endings from liberating acetylcholine. They can cause irreversible paralysis in as little as 3 to 5 minutes. These neurotoxins are found prominently in <i>Acanthophis, Pseudonaja, Notechis, Oxyuranus</i> and <i>Pseudechis</i> species. Beta toxins are absent in the venom of <i>Pseudechis australis</i> .
			Single chain β neurotoxins are composed of a single polypeptide chain of 13-14kDa molecular mass, the amino acid sequence of which is homologous with that of other Type I and II phospholipase A ₂ s from mammalian pancreas and snake venoms. Two significant phospholipase A ₂ s from O . sentellatus O. s. scutellatus are the toxic monochain PLA2s OS2 and the non toxic OS1 . OS1 binds to M-type (muscle type) neuronal PLA ₂ receptors but not the N type (neurone type) receptors (Lambeau, <i>et al.</i> , 1990), whereas OS2 binds to both M and N type PLA ₂ receptors.
			Larger pre-synaptic neurotoxins are made of two, three or four polypeptide subunits that are not linked by disulphide bridges and have a sequence homology with phospholipase A_{2s} from both type 1 and II peptides. At least one of the subunits possesses PLA_{2} activity and is responsible for the enzymatic activity of the neurotoxin. The other subunits may or may not have phospholipase activity. The multi chain neurotoxic PLA_{2s} exist as phospholipases in <i>Oxyuranus</i> and <i>Pseudonaja</i> venoms (taipoxin and textilotoxin). Although it may also contain smaller peptidic components (taicatoxin) this peptidic component selectively and reversibly blocks high threshold calcium channels, (Lullmann-Rauch and Thesleff, 1979; Fantini, <i>et al.</i> , 1996). The phospholipase

			A ₂ neurotoxins, textilotoxin (<i>Pseudonaja</i>), taipoxin (<i>Oxyuranus</i>), notexin (<i>Notechis</i>) and pseudexin (<i>Pseudochis</i>) are closely related
			(White, 1981; Middlebrook and Kaiser, 1988; Gandolfo, et al., Lambeau, et al., 1990, Lambeau and Lazdunski, 1999).
		Post-	The nicotinic acetylcholine receptor (AchR) plays a central role in post-synaptic neuromuscular transmission by mediating ion flux
		synaptic	across the cell membrane in response to binding of acetylcholine (Changeux, et al., 1984, Conti-Tronconi and Raffery, 1982; Hucho
		Neurotoxins	1986 Karlin 1980: McCarthy et al. 1986) This regulatory activity is inhibited by hinding to an alpha neurotoxin (i.e. 1979) or to
		(a)	some anti A b B antibodias. The resentor is a partometer source of four subunits ($\alpha 2 \beta \alpha \beta$). Functional studies based
		((()	mostly on the guidentic bacteria is a pertained composed of role sublimits (02,95,0). I directional statutes have focused
			hostly on the α-subulit because it is responsible for binding acetylcholme (changeux, 1981, Moore and Kanery, 1979, Sobel, et al.,
			19/7, 12artox and Changeux, 1983) and α -neurotoxins (Bon, et al., 1979; Dutton and Hider, 1983; Endo et al., 1987; Joubert and
			Viljoen, 1979; Lee, 1979; Noda, et al., 1982, Noda, et al., 1983).
			Short chain neurotoxins:
			The short chain neurotoxins are found in the venom of members of the genus <i>Acanthophis</i> , <i>Oxyuranus</i> and <i>Pseudechis</i> . The short
		1	chain neurotoxins isolated thus far from Australian elapids are homologous (mostly 62 amino acids), basically charged post-synaptic
			blockers of neuromuscular transmission with a great deal of sequence homology. Taipan toxin 1 and toxin 2 from OS are short
			chain alpha-neurotoxins that inhibit the binding of bungarotoxin to nicotinic acetylcholine receptors in skeletal muscles but not the
]		1	central neuronal nicotinic receptors (Tu and Dekker, 1991).
			The primary structure of short neurotoxins is composed of 60, 61, or 62 amino acid residues, which are linked by disulphide bridges.
			Most of the invariant residues are localised in either the immediate vicinity of the disulphide bridge in the globular head or toward
		1	the distal ends of the three major loops. In contrast, the least conserved residues appear to be grouped across the loop of the globular
			head (Tu and Dekker, 1991).
			Long Neurotoxins: Both short and long-chain post-synantic neurotoxins share a similar three-finger loop structure (Walkinshaw
			Saenger et al. 1980: Yu and Dennis 1993) and show differences in their primary structure. The major variations are observed at the
			C-termini as well as at the first of loop 1 and loop 2 of these proteins (Gong et al. 2001). Long-chain neurotoxins possess extra
			amino acids beyond the short chain neurotoxin and noint CNY (X coding), it al. 2007. Tomiya at al. 1007:
			The at al. 1900) I on a botterian neurotoxin and found in Acathonics Natachis Desadirbis and Psaudonais angles a nanome
			are even sions of the short short short on short 10 among as A four other particles found in Operations and Operations
			are extensions of the short chains with about another to annuo actus. A few outer peptides found in <i>CAyarahas</i> and <i>Fseudonaja</i>
			venons minor die serine protesse plasmin (Cracin et al., 1999a). These toxins also possess a night degree of nonlongy. Long
			reflectoring generally associate and dissociate much more slowly than the short chain neurotoxins. These differing rates are
			reflected in major differences in the sequence between the two types of toxins. Long neurotoxins also contain four disulphilde
			bridges of short neurotoxins, but possess an additional disulphilde bond in the central loop of the molecule. Long chain neurotoxins
			nave a longer polypeptide chain (between 65 and /4 residues) giving the characteristic COOH-terminal tail. Apparently, where there
			are differences in sequences or chain lengths, these alterations do not disrupt the clustering of the disulphide bridges or the three
			major loops. In long neurotoixns, the least conserved regions tend to be found in the COOH terminal tail and the first loop. The
			homologues of long neurotoxins usually lack the fifth disulfide bridge (between Cys-29 and Cys-33 in long neurotoxins) (Weber and
			Changeux 1974; Chicheportiche, et al. 1975; Pillet, et al., 1993; Tremeau, et al., 1995)
	Cardiotoxins		Cardiotoxins reversibly block high threshold voltage dependent calcium channels. Taicatoxin, which is different from taipoxin, has

Appendices

	been isolated from O . scutellatus O . s. scutellatus venom and is composed of three molecular entities, an ∞ -neurotoxin like peptide, a 16 kDa neurotoxic phospholipase, and a 7 kDa serine protease inhibitor, linked with a stoichiometry of 1:1:4 (Lullmann-Rauch and Thesleff 1979;Brown, et al., 1987; Possani, et al. 1992a and b). Phospholipase activities of taicatoxin have also been confirmed (Fantini, Athias et al. 1996). The gamma subunit of taicatoxin or the 7 kDa serine protease inhibitor is distinct from all other toxins isolated from elapids and is related (64%) to a chymotrypsin inhibitor from Vipera ammodytes (European long nosed viper) Willmott, et al., 1995).
Haemorrhagic	The haemotoxic PLA ₂ s produce haemorrhage through the blockage of factors in the coagulation cascade resulting in a disruption of haemostasis. These components themselves do not produce net anticoagulation through fibrinolysis but rather bind specifically to molecules essential to the coagulation processes (Gutierrez and Chaves 1980; Gutierrez <i>et al.</i> 1980; Condrea, <i>et al.</i> , 1981; Francischetti, <i>et al.</i> , 1997).
Myotoxic	Notechis and Pseudechis species contain myolytic activity. Nephrotoxins causing renal failure have only been discovered in the venom of one genus, <i>Pseudonaja</i> (White, 1981). Damage is caused to the skeletal muscle after envenomation. This process, myolysis, or more specifically rhabdomyolysis, results in the release of the muscle protein myoglobin which is then excreted in the urine. If muscle damage is extensive then the resulting large quantities of myoglobin may block the kidney tubules, causing acute tubular necrosis and renal failure. As well as releasing myoglobin the damaged muscle loses enzymes, including creatine (phospho) kinase (CPK, CK). Myotoxins attack skeletal muscle and result in damage to muscle fibres. Symptoms include muscle weakness and pain upon moving (Gutierrez, et al., 1995, Mebs, 1986).
Lysophospho- lipases	Lysophospholipases hydrolyse the sn-1-acyl ester of lysophospholipids. These lipases, found in <i>Pseudechis australis</i> venom, are haemolytic (Takasaki and Tamiya, 1982), but exist in few snake venoms (Takasaki <i>et al</i> 1992; Tan and Ponnudurai, 1990; Bell, <i>et al.</i> , 1998; Bell, <i>et al.</i> , 1999).

Appendix IV: Mass Spectrometry spectra

In the upper right-hand is TOF MS ES+ or TOF MSMS XYZES+, where XYZ represents the peptide mass selected for MS/MS. The TOF MS spectra contain all of the peptides found in the mixture. Typically, doubly or triply charged ions between the m/z range 500-1000 Da are chosen for MS/MS analysis. The TOF MS/MS spectra contain two MS/MS spectra. The bottom spectrum is the raw MS/MS data collected from the instrument, whereas, the top spectrum is the MaxEnt3 deconvoluted spectra. MaxEnt3 is an algorithm that removes all multiply charged peptides so the data is compatible with sequence interpretation. Following the MS/MS spectra, the analysis of the MS/MS data is summarised. The MS/MS ions a, b, y and z (please note y-type ions are used for sequencing of the peptides) are shown at the top of the page along with the called sequence. The bottom of the page contains the MaxEnt3 spectra and the called sequence (reference from APAF).

IVIS TOF SCAN

Peptide sequence: YF[L/I]VSNPGR

Observed MWF 1051.6244 Precursor for charge-state: 1 M/2 (denance: 0.30 Internality threshold: 26 (0.350%) Modifications: Methornhe Sulfoxide (++) Cysteline acrystamide $\langle ++ \rangle$

	· • •
Iou	No
42.4 0.05 0.08	100 GG

Appendices

Peptide sequence: AA[L/I]FAD[L/I]SPAE[L/I]R

Observed MW: 1372.7844 Presursor ion charge state: 1 Miz tolerance: 0.30 Intensity threshold: 2 (0.250%) Modifications: Cysterine acrytamide (+/-) Methionine Sulfoxide (+/-)

-

1327.74 1355.73 	Årg	175.12 -0.01 159.09
1171.64 0.01 1199.63 0.01	ner	288.20 -0.01 271.17 0.02
1058.55 1086.55 0.10	Glu	417.25 -0.02 400.22
929.51 957.50 -0.02	Ala	488.28 -0.03 471.25 -0.06
858.47 886.47 	Pro	585.34 -0.03 568.31 -0.06
761.42 -0.07 789.41 -0.05	Ser	672.37 -0.05 655.34 -0.03
674.39 -0.09 702.38 -0.04	nerj	785.45 -0.05 768.42
561.30 -0.03 589.30 -0.04	Aap	900.48 -0.07 883.45 -0.14
446.28 -0.04 474.27 -0.04	ala	971.52 -0.07 954.49 0.00
375.24 -0.02 403.23 -0.03	Phe	1118.58 -0.08 1101.55 0.01
228.17 -0.02 256.17 -0.02	Lou	1231.67 -0.10 1214.64
115.09 -0.01 143.08 -0.01	Ala	1302.71 -0.13 1285.68
14.05	Ala	1373.74

Peptide Sequence: TW[L/I][L/I][Q/K]R

Cheerved IAN: 928-0044 Precursal ion change state: 1 IAV2 tolerance: 0.30 Intensity threshold: 20 (0.250%) IAbuffications: Cysteine acrytamide (+/-).Maltionine Sullaxide (+/-)

74.06	250.14	373.22	10.085	559,39	727.49	883.55
-0.00	-0.02	-0.05		-0.07		1
102.05	268.13	401.22	514.30	627.39	755.48	35.116
÷	-0.02	-0.03	+0.04	10.0	1	
Thr	Trp	Leu	Leu	net	Lys	Arg
929.59	828.55	642.47	529.38	416.30	10.01	10.0-
912.56	811.52	625.44	512,35	399.27	286.18	158.03
1	-0.04	-0.00	10.0-	0-00	0.02	

Peptide Sequence: AV[F/M][F/M]Q[Q/K]R

--AVFFQ[Q/K]R

Observed MW: 993.5844 Precursor ion charge state: 1 Mz tolerance: 0.30 Intensity threshold: 8 (0.250%) Modifications: Cysteine acrylamide (+/-) Methionine Suffoxide (+/-)

rt D

44.05 72.04 -0.04	143.12 -0.01 171.11	242.19 -0.00 270.18 -0.02	389.26 -0.03 417.25 -0.05	536.32 -0.02 564.32 -0.06	664.38 692.38 	792,44 820,44 	948.54 976.54
Ala	Val	Val	Phe	Phe	GID	Gln	Arg
994.55 977.52	923.51 -0.03 906.49	824.44 -0.05 807.41	725.37 -0.08 708.34	578.31 -0.05 561.27 -0.03	431.24 -0.03 414.21 -0.04	303.18 -0.03 286.15 -0.02	175.12 -0.02 158.09 -0.02

Peptide Sequence:[L/I]NSHAG[L/I]V[L/I]PR

Observed MW: 1175.7043 Precursor fon charge state: 1 MXz Idearance: 0.30 Intensity Intreshold: 6 (0.250%) Modifications: Cysterie acrytamide (4/b) Methodine Suttoxibe (4/b)

106.10 200.14 287.17 414.23 495.27 552.29 665.37 76 -0.01 -0.02 -0.04 0.00 -0.04 -0 -10.01 -0.02 -0.04 0.00 -0.04 -0 -114.05 228.13 315.17 422.23 523.26 580.28 693.37 79 -114.05 -0.01 -0.03 -0.04 -0.09 -0.08 -0 -		4.44 877.53 974.58 .03 2.44 905.52 1002.57 .09 -0.08	Val Leu Pro	4.32 365.26 273.17 .05 -0.02 -0.02 7.29 368.23 255.14 02 -0.03 -0.03
86.10 200.14 287.17 414.23 495.27 552.29 -0.01 20.02 -0.02 -0.04 114.09 228.13 15.17 423.23 523.26 580.28 114.09 20.13 -0.03 -0.04 -0.09 -0.08 -0.01 -0.03 -0.04 -0.09 -0.08 Lou hun Sor His Ala Cly 1176.69 1063.60 949.56 862.53 725.47 554.43 -0.04 -0.06 -0.06 -0.07 -0.08 -0.014 -0.18 -0.08		665.37 76 -0.04 -0 693.37 79 -0.08	nej	597.41 48 -0.04 -0 580.38 46 0.01 0.
86.10 200.14 207.17 424.23 -0.01 200.14 207.17 424.23 -0.01 -0.02 -0.04 114.09 228.13 315.17 452.23 -0.01 -0.03 -0.04 Lau Aun Gor H13 1176.69 1063.60 949.56 662.53 -0.04 -0.05 -0.06 1159.66 1046.57 932.59 245.50		495.27 552.29 0.00	YID EIA	725.47 654.43 -0.07 -0.08 708.44 637.40
86.10 200.14 287.17 -0.01 -0.02 315.12 114.09 228.13 315.12 114.09 -0.01 -0.03 114.09 -0.01 -0.03 Lou Acn Sor 1176.69 1063.60 945.56 1159.66 1046.57 932.53		424.23 -0.04 452.23 -0.04	His	862.53 -0.06 845.50
86.10 200.14 -0.01 -0.02 114.09 -0.02 114.09 -0.01 Lou Asn 1176.69 1063.60 -0.04		287.17 -0.02 71.21E	Ser	949.56 -0.06 932.53 -0.18
86.10 - 0.01 - 0.01 1176.69 	•	206.14 -0.02 228.13 -0.01	Asn	1063.60 -0.04 1046.57
		86.10 -0.01 114.09	ner	1176.69 1159.66

Appendix V: OS, OSC and OM whole venom fractionated via anion exchange.

to 100% Buffer B (1M NaCl) over 10 column volumes at 4°C. Note the differing absorbance scales (A₂₈₀) on the right in blue. Scales were manipulated to show the NaCl. Three to five milligrams of protein was loaded in a total volume of 1ml with the same buffer. Samples were run at 3ml/min with a linear salt gradient from 0 Whole venom from OS, OSC and OM eluted from a Uno Q (BioRad) anion exchange column. The column was equilibrated with 50mM HEPES (pH 8.0) + 20mM greatest resolution of the profiles.

00.06.0

Appendix VI: OS, OSC and OM whole venom fractionated via cation exchange.

Whole venom from OS, OSC and OM on a Uno S (BioRad) cation exchange column. 3-5ug of protein loaded onto static loop in a volume of 250ul using 50mM MES (pH 6.0) + 20mM NaCl. Samples run at 2ml/min using 0 to 50% Buffer B (1M NaCl) for 8 column volumes.. Samples were run at 3ml/min with a linear salt gradient from 0-100% Buffer B (1M NaCl) over 10 column volumes at 4°C. Note the differing absorbance scales (A280) on the right in blue. Scales were manipulated to show the greatest resolution of the profiles.

Starting from the first peak on the left; Equine myoglobin 17 000 Da, pl 6.9 Ribonuclease A 13 500 Da, pl 8.7 Cytochrome C 12 000, pl 10.7

2

0000

0200 0200 0200 0200 0200

Appendix VII. Phylogram of a neighbour joining distance tree for Oxyuranus putative and peptide sequences.

This tree represents the relationship of *O. scutellatus* pre-synaptic neurotoxin sequences. Alignment was conducted using NJTree and TreeView. These sequences were subjected to bootstrapping x 10,000. Bootstrap values (x 10,000) are displayed at the nodes and indicate how robust the clusters are. The clone numbers and characterised *Oxyuranus* peptides are discussed in Chapter 5.

niplot Chronseq.phb Mon Jul 26 14:15:35 2004

Appendix VIII Summary of clones from cDNA library

The majority of nucleotide sequences from the *O. seutellatusO. s. scutellatus* cDNA library were isolated using binding studies, with a small percentage isolated using mass excision as indicated. All sequences are displayed using either their putative peptide name, as identified from sequence homology using BLAST or, if no conclusive match was found, the clone number was used (see Table 5.1). These sequences are followed by their GenBank accession number, if submitted, clone number and nucleotide sequence. The abundant HSP and PDI nucleotide sequences are displayed with their putative translated sequences (MacVector) aligned. Translation of some nucleotide sequences using vertebrate mitochondrial codons resulted in an ORF for all cytochrome C and NADH dehydrogenase sequences. A small number of sequences, which shared low homology with characterised peptide toxins, did not contain an ORF regardless of the codons used for translation.

For reference, all clones were sequences from the 5'-end (T3primer) and some complete protein matches were achieved using BLAST without the complete sequence of the clone required. GenBank sequences not matching characterised toxins are to be released immediately. Sequences sharing homology with characterised toxins are to be released on October 22nd 2005 or until publication of this thesis.

Complete sequences of clones aligning with areas of serpente nucleotide sequences

This group of nucleotide sequences were isolated through binding studies using taipan monovalent antivenom (CSL). These clones, which produced an antigenic protein, did not code for an ORF using either universal or mitochondrial codon usage.

R 5

The nucleotide sequence was very clean from 1 to 2,000 bp with no ORF found. Within the sequence (between nucleotide 2,000 to 3,000) clean sequence was difficult to obtain suggesting there is possibly a secondary structure in this region. The nucleotide sequence matched the C-terminus of *Homo sapiens* PHD finger protein (GenBank accession no. NM024517) 5238 bp; with 129/134 matches (96%), *Gallus gallus* (GenBank accession no. CR406187) 931 bp, 107/112 matches (95%), *Bungarus multisinctus* (GenBank accession no. AJ421675) Exon 1-3 2358 bp, 57/58 matches (87%) and Gamma bungarotoxin, GenBank accession no. AJ416991, 2448 bp; 41/47 bp (87%), *Naja atra* gene for cobrotoxin (GenBank accession no. YI3399) 2386 bp; 49/46 base pairs (87%).

R5 nucleotide sequence

CTTAGTGAACAATACCAGTTAACTTTTTGCCACCACTTTAATAAATTCTTTTTAACTTTCGGCAGTTAAAACCTGTACAGATACTGCT ATAAATATTTTTTAATATAGATGTCCTTTCTCAAATTGCTGAGAGTGACTAGTTCGCAAAAAGTTAATTCTCCCAAGACACTGAGGATC **GGCTCATGATAAATATGTTTTATTCAGAAGAGAAGTTAAAATTGCACTTCAGCACTGCTAAAACTTTCCCTATAACCAGACATTGGAG** AACTATGGATGACTTAATTTATTTATGTGCAATGCAAGATGATTTTTTAAAAAACATTATGGATTACAAATCCAATTTAATTGGTTAA TACTTATATGACATGGTTTACAGGCCTACAGGGGCTAAAGCAAAATCAAATCAATTGTACTATATCTTAGTATGTTAGCGTAGGGCCA GTATTCCTTCCCCCATGCCCATATATTTTTAATTTGGCGTTGCAGTTTTGAAATTATATCCTCATTAATTTTAATTTCACGGCTAGGGT ${\tt TAGGGTTAGGGTGGAATCAGACATTAACTTGATGATAGTATTGTAGCTTCTGCTTGGATGGTCATAATGTATTGATAACATGTGACAT$ TGGAGAATATGTAAGAAAAAAGATGCCAGGTTCATCCCTAGATGCTGCCAAGAATGCCAGTGACAAAATGCCAGTTTTCTTTGTG CGGCCTGAGTGGGTAGCAGGCATATCACAATCATTAGAGAGGGCTGTAAAACACTGTGAAGCAGTATATAAGTCTAAGTGCTATTGCT ATTGCTGTCTTATAAAATGGCATCTTTAGTCAAATATCTCTTTTCCTTATTTTTTGAAGGAACTTTTAATCTCCCCTCTAGCAATTCTA AACTCTAAAGTTCATGACTGATGATTATCCTCATAAATCACTTACGTTATCTTGAGATGAAAGAGAAAGACAATGGTTCTTTTTTC ACTTCCATTTCCCCGGATCATGGATTAATCCCTGCATCATGTAAACAAATCAAGCAAAGAAGCTCCTGTCCTGGGACTCCAAGCACTT CCAAAGGAACACACCACCCCATTTAGAGCTTATGAATCCATTTAATAATATTATAGATCAGCTGTTTATATAAACCTCAGTTGCAAG CCTGTAATTAGGTAGAAAGAATGTGCAGCCCTATTGGAGAAGGATTCTGACAATTCGAATGTATGCTGTATCTCAAAGCAACTTCCAC TTGTCAAGAGTATGCTTGTCTGTAAGGATACAAGGGCTGTGCTCACCTAAGGGTTAGGCCAGGTGAGTAGCCAAGCTTATCGTACTAG TTTAACTGGTATACTTGTTGTTTGAACTCTTTAGTGTTTGGTGTAGAATGCATTATATTTACATTAAATAGCTTGTCTGCATATAAAC ACTTAGAGCTACAATCCTATGCTATGTTTACTCAGTATATCAAACCTGTTGTGTTCCATGGAACTTACTCTCTATGTATAGAGTACTA TGTACAGGATTGTAGCCTTAAGGTGTGCATTTGTTTTCAGGCAATTCCAGATTTTCATTATAGATACTTGTCTGAAAGCATATTTTT TTCATTTAACCTTTTATACAATTTTTTTGCTGAGTATTTTGCCCCGAGTATTTTTAAGTTTCTGACTCTGAATGGGATACTCTGTTTT **TGTCCTGATTTAATCCTTTTTTCTCCCCCTTTTTTAATTTGGCCATTGCCCTGGAAAAACAAGTAAAACTTTGTGCAGCCTTATACAGAA TCAATAATAGTACAAAATTATCTATTTAAGATACAATATGAAGAAGAATCTTTGACTTTATAATACCAGCTCCTTGTCTCTAATTCTT** GTATTATGAGGGGATACAATTATTTTATTAGCACCTTGTGAAGTGTTTCTGTGTTTTGTGATGATGTAATTTATTAATGTTTGTAGCT TTTTATATTTGTACATTTCTTATGAGCTTTGTTTATATACACATTACCTGGATGTGATGTCCATGAGGAAAAAATAAAACAGCTATAG AAAACAACTGAGGCCTTATTAACTGACCTTTCTAGTTATGGTGAGCGACTGGTTCTGAATTCTCGGCATCAAAAATATTAGTTGAATA GGGCCCCAGAGTTAAGCAAGTTTTTTAAAGCTTCCCTAGTATACTGTTATTGTCAAGCATTTATATAACGCAGACATCATGCTGGTTT TTTACCAATTCATATCAAATGCTCTTGTATCAAGTCCATGAAATCTAAGTAAACTTAGATC

R8

The R8 nucleotide sequence matched with *Elaph Obsoleta microsatellie* Eobms sequence (GenBank accession no. AF544661); 41/46 matches (89%) and *Atractospis microlepidota* andersoni partial 469 bp GenBank accession no. D13322, 31/33 matches (93%).

<u>R8 Nucleotide sequence</u>

ATAAAATACAGTTAAAGGAAAGGTTTCCTTTAAGGAAATTACTCCTTTTGTTTTCATTTAATAATGCATCATTGCTGCTGCTGCGTTC ATGTTTTCCCAAAATAATTACATGCTGGATTTGCAGTAGCTGGAGAATAAAAGTTAAAATTTTAAATTACATTTTCCACACTGAAGTA ${\tt CTGAAAATACATTTACCAGAGAGTAAATCTCTAGTGATATTAGTCACTATTAACTGATCAATTTTGGCACAACTTAATTGTAAGATTG$ TATAATTGTACAAAATCCTTATTGAATCTCATAGGAATTTCATATTCGTAGTTGTATGCCATGTTAGAGCCAACATGGGCATATATAC AGATGTTTTATTCCCAAAGTGCTAGAAATATTCTTCCTAATAGAAAAAAGAAGGAGCTGTATATTCCATTGTGTATATTCCACTTCCT ${\tt CTTTCCACAAAATTGAAACTGGCAGCAAAGTAGACAGCACAAATTTAAAAATTAAAAATAAAAATATCTTCTTCTAGTACAGGAGTCTCCA$ ACCTTGGCACTTTAAGACTAGCAGACTTCAAACTCCTTGAATTTCCCAGCTAATGGCTAATTCCCCAGCAGGAGAATTCTGGGAGTTG AATCCATCAGGCTTGGAGTTGCCAAGGTTGGAGACCCCCTGTTCTGGTACAAATAGCAACATTCAGGTGAGCTTCTCTGGTGAAAGAAC AGAATGAAGACAACTGGGAAATGCAACAGACATTTTGAGTCTCTTCCATCTTTGAAGTTGTTCATATATGCTCAAGTATGGGCCTTC AGCCTTCATACAATATTAATTTGTAGTGTATGGTATGTTATATAACAGAATATGATTAAACTATTTCCAGTGTGAAAATTAAATTAAATTAAA ATTAAATTGAAAATTAAATGAGCTAAGGAAAAAACTAAACCACCGTCATGTTCCTCCGTCAGTCTATAAGAGCTAAATGGTCATATGG ATTACAATGGAAATAGAAGAAAGGGAGGAAGGAAGGTATGATTTTAGTCCTCTGTTCCTTGTCTGCATTTTGAAAGTAGGGAAGAAA TTAATATTATGTAAATGTCTTAGATTTTGTTGAAAAAAATCTTCATGGGCACTGGATATTTTTATCTTCATTGACCACTGAAA ACAACTGTGGCTATGAAATGACAAGTGCAAACAAACTTCACTGTCAGGGTGAAATGTTTCTTGAAATAGCTGGTATGAAAAACTAGGT AGAGTCAGCACAGTATCAATTTTGTACCTATCTTATAAATATTGATTATTTAAACTGCTGATGCAGTACTTAGCAATTTTCAGAATCT GAAAATAAACTGTATCTAGTTTTCTAAGCTCCTTCTTTGTGAGCAGATGTCTTTCATTTTCTGAATATTAACAATTGTCAGGAAATCT

R 11

This sequence aligns with a small area of *Trimeresurus flavoviridis* (crotalid, GenBank accession no. D31777), D13384 gene for PLA₂, *Trimeresurus gramineus* (GenBank accession no. D31782) TATA box binding prot and *Laticauda semifasciata* gene for PLA₂ (GenBank accession no. AB111959). R11 Nucleotide sequence

```
AATTCGGCACGAGGGTCAAATACTACCTGTATAGCAAACTGGCTCATGATATGGCATAACGCTGCAATACATAGTTTATATTGTTAAT
TTATGGTTCATCGTGTAGTGGGAGCACAGTCCATTGGACTCATTCAGATAGTCATAATTAGTTAATTCTGGTATGGGCTTTGAATGGT
TTCAAGCAAACCTTTTGGAAACTTCTGATCCAAAGTTCTGTAAAAGATTTGGGATGCCCTTATCAAGATCATATGAAGTGTTAATATC
ACTTTATAATGCCTTGTTAAGGCCATATACTATATTGGAATACTGTATTCAGTTTTGGTTGCCACGATGTAAAGAAGATGTTGAGGCT
CTAGAAGGACTGGAGAGAGAGAGAGCAACAAAGATGATTAGGGGGGCTGGAGGCTAAAAACATGAAGAACGGTTGCAGGATCTGGGGTATGTCT
CTCCAAAACATCTGAGGGCAGGACAAGAAAATGGGTGGAAACTAATCAAGGAGAGAAGCAACTTAGAACTAAGGACATTTCCTGACAG
TCAGAACAATTAATCAGTGGAACAACTTGCCTCCAGAAGTTGTGAATGCTCCAACACTGGAAGTTTTTAAAAAGATGTTGGATAACCA
TTTGTCTGAAGTGGTGTAGGCAAGGCAAGGTCCCTTCCAACGCTGTTATTCTAAAAATACCTGTCCTCTCTGCTGTTACCTCCCT
TTCCTTATTTTTTTAGCACATATACATTGTTACTTTCATCTGAGTGTGTTTTACCAAAATTCAGAATTGCCTCAGTATTACTTGGGAA
ACACATTTTCATAATATCTTAGTAAGGAGTCATTTTCTGGGAAATAGATATACTATACTGACAGAGTGGTAGATATAAAATATGATGCCA
AACATCCAGGAAGCTAAAAATCCTAAACACTTTGAGGTAAAAAGAAGTACTGTTGAACTAAGAGTAGTTGGGGTCAGTCTAAACTATAT
GTGTTCTCCGATCTTCAAATAATGTTTTAAAAACTGACTTTAGAAAAAGATAATGTAGGAACTGCATTTTTTATTTTTCAATGTCTTGT
AAAAA
```

R51

This clone was isolated using mass excision. The sequence aligned with a small area of *Naja naja* genomic DNA (GenBank accession no. AF236683) and *Elaphe bimaculata* 12S ribosomal gene (GenBank accession no. AF236671).

R 51 nucleotide sequence

R 65

No ORF was contained in this sequence, yet it aligned with a small area of *Elaph quadrivirgata* mRNA PLA₂ inhibitor (GenBank accession no. AB060638), *Vipera ammodytes* genomic DNA (GenBank accession no. AF332697), Bov B, *Bungarus multisinctus* (GenBank accession no. AF251222), *Laticauda colubrina* PLA₂ gene (GenBank accession no. AB062448) gene LcPLA2PC20.

Nucleotide sequence of R65

Sequences of clones aligning with complete proteins after BLAST matches

Natriuretic peptide (GenBank accession No. AY691663).

Alignment of R27 shared homology with the partial characterised natriuretic peptides from Oxyuranus scutellatus (100%)(natriuretic peptide, GenBank Accession no. P83225), Oxyuranus microlepidotus (100%)(GenBank Accession no. P83224), and full sequences from Micurus corallinus (GenBank Accession no. AAC60341.1), Bothrops insularis; bradykinin potentiating protein (75%) (GenBank Accession no. AAMO9692) and Bothrops jaracara Bradykinin potentiating protein 75% (GenBank Accession no. BAA12879, Murayama 1997).

P83228 sdpkigdgcf glpldhigsv sglgenrpvq nrpkk

Nucleotide and deduced amino acid sequence of R27 in two reading frames.

1 AATTCGGCACGAGGAGACGCTCCTGCAGCCACAGTACCCGGCTTGGCTCTCTTCGGCTCAGCAGTCTGC 69 70 GCCCTTGAGGATTCCTCGCTCTCTCTCTCTCCACCCGGGGAAA ATG GTC GGC CTC TCC CGT 133 1 MVGLSR 6 134 T. А G G GLLLLL L L А L L Ρ L Α 24 7 188 CTC GAC GGG AAG CCG GCG CCG CTG CCT CAG GCG CTG CCC GAG GCT CTG GCG GGC 241 25 L D G Κ Ρ А Ρ L Ρ Q Α L Ρ Е А L А G 42 242 GGC ACG ACG GCG TTG CGG CGG GAC GTG ACG GAG GAG CAG CAG CAG CTG GTG 295 43 R R D V т Ε Ε Q V 60 G Т т А L Q Q Q L 296 GCG GAG GAG TCC TCG GGT CCC GCG GCT GGG CGC AGC GAC CCC AAG ATA GGG GAT 349 61 А Ε Ε S S G Ρ Α А G R S D Ρ Κ Ι G D 78 350 GGC TGC TTC GGC CTC CCG CTC GAC CAC ATC GGC AGT GTA AGC GGC CTG GGC TGC 403 V G 79 G L P L D Н I G S S G L С 96 G С F 404 AAC AGA CCC GTC CAA AAC CGC CCG AAA CAA ATA CCT GGC GGA TCC TAAATAATTGG 459 97 V Q N R P K Q r P G G S 112 Ν R P 450 CTTTATTTTAGTTTTACTTCTTTAGATTGTTTAGTATATATCGGCTTAGAGAAAATTAAGGATCATAATGAT 531 532 GTGTCATGTAAAATGAAATGGGGGGTAAGCTGAAAAATGGAAATAAAAGGGGATAAAGAATTGAAACCTATG 603 676 AAATGGATAATGATATGAGATGATATTATATAAGATTAATGGAAATGAAAGTATGATTATGTACAAGTGTTA 747 748 TAATCCGAAATCATGTTGCTCACGTGAAGAGATGTGTAAAAAATTTTTTAAAAAATAAAAAACTTTTACATCTT 819 ААААААААААААААААААААААААААААААААААААА

HSP 70 (GenBank accession No. AY691667). The deduced amino acid sequence is shown below the nucleotide sequence. AATTCGGCACGAGGGTTGTTCGTTGTTGGTGTTTAACTGTCAGCTTCGGAAAACTTTCATTTTAATCCTC GAAGTTTTAGAGGGATATCTTGATCGCGTTACTGCAACCATGTCGGCCAAAGCGCCTGCCATAGGCATTG M S A K A P A I G I> ACTTGGGCACCACGTACTCCTGCGTCGGAGTTTTCCAGCACGGGAAAGTGGAGATTATCGCCAACGACCA D L G T T Y S C V G V F Q H G K V E I I A N D Q> AGGCAACCGCACTACACCGAGCTACGTTGCCTTTACGGACACTGAACGGCTTATCGGAGATGCAGCCAAG G N R T T P S Y V A F T D T E R L I G D A A K> AATCAAGTGGCTATGAATCCTAACAATACCATCTTTGATGCCAAGCGTCTCATTGGCCGCAAATTCGATG N Q V A M N P N N T I F D A K R L I G R K F D> D P T V Q S D M K H W P F R V V S E A G K P K V> GCAAGTCGAGTACAAGGGTGACACCAAGAACTTCTTTCCTGAAGAAATTTCCTCGATGGTATTGACCAAA Q V E Y K G D T K N F F P E E I S S M V L T K> ATGAAGGAAATAGCCGAGGCTTACCTGGGTCGCAAAGTCCAGAGTGCTGTGATTACTGTACCTGCATATT M K E I A E A Y L G R K V Q S A V I T V P A Y> TCAATGACTCCCAACGCCAAGCCACCAAAGATGCAGGTACCATTACAGGTCTCAACGTATTGCGCATCAT FNDSQRQATKDAGTITGLNVLRII> TAATGAGCCCACGGCTGCCGCTGCCATTGCCTATGGTTTGGATAAAAAAGGGAGCAGAGCAGGTGAGAAGAAT N E P T A A A I A Y G L D K K G S R A G E K N> GTACTGATCTTTGACTTGGGTGGTGGCGCACATTTGATGTTTCCATTTTGACCATTGAAGATGGCATCTTTG $V \hspace{0.1in} L \hspace{0.1in} I \hspace{0.1in} F \hspace{0.1in} D \hspace{0.1in} L \hspace{0.1in} G \hspace{0.1in} G \hspace{0.1in} G \hspace{0.1in} T \hspace{0.1in} F \hspace{0.1in} D \hspace{0.1in} V \hspace{0.1in} S \hspace{0.1in} I \hspace{0.1in} L \hspace{0.1in} T \hspace{0.1in} I \hspace{0.1in} E \hspace{0.1in} D \hspace{0.1in} G \hspace{0.1in} I \hspace{0.1in} F > \\ \end{array}$ ${\tt AAGTGAAATCTACTGCTGGAGATACCCACTTGGGTGGGGAGGACTTTGACAATCGCATGGTGAGTCACTT}$ EVKSTAGDTHLGGEDFDNRMVSHF> TGTGGAGGAATTCAAGCGCAAGCATAAGCGTGACATTGCTGGCAATAAGCGAGCAGTTCGACGGCTCCGC V E E F K R K H K R D I A G N K R A V R R L R> ACAGCCTGTGAGAGAGCCAAACGTACCCTGAGTTCCTCCACCCAGGCTTCTATTGAGATTGACTCCTTAT T A C E R A K R T L S S S T Q A S I E I D S L> ${\tt TTGATGGCMTTGATTTCTATACATCCATTACTCGTGCTCGCTTTGAGGAGCTCAATGCTGATCTCTTCCG}$ F D G X D F Y T S I T R A R F E E L N A D L F R> TGGTACTCTTGAACCTGTGGAGAAGGCTCTTCGTGATGCTAAGCTAGACAAAGGACAGATTAATGAAATT G T L E P V E K A L R D A K L D K G Q I N E I> GTTCTGGTTGGTGGCTCAACTCGTATTCCCAAGATCCAAAAGTTGCTCCAAGATTTCTTTAATGGAAAAG $V \perp V \in G \in S T \in I P K \perp Q K \perp L Q D F F N G K>$ AGCTAAAACAAAAGCATAAATCCTGATGAAGCTGTGGCGTATGGTGCTGCTGTGCAGGCTGCTATTCTGAT

ELNKSINPDEAVAYGAAVQAAILM> GGGTGACAAGTCAGAAAATGTGCAAGACCTGCTGCTGCTTGATGTAGCACCACTTTCTCTGGGTATTGAG $T \quad A \quad G \quad G \quad V \quad M \quad T \quad A \quad L \quad I \quad K \quad R \quad N \quad T \quad T \quad I \quad P \quad T \quad K \quad Q \quad T \quad Q \quad T > \\ \end{array}$ TCACTACCTATTCAGACAACCAGAGTAGTGTGTGCTGGTACAAGTGTATGAAGGTGAGAGAGCCATGACCAA FTTYSDNQSSVLVQVYEGERAMTK> GGACAACAATCTGCTGGGCAAGTTTGACCTGACAGGTATTCCACCTGCACCTCGTGGTGTGCCCCAAATT D N N L L G K F D L T G I P P A P R G V P Q I> GAGGTGACATTCGACATAGATGCAAATGGTATTCTCAATGTCACTGCAGTGGACAAGAGCACCGGAAAAG AGAACAAGATTACAATAACTAATGACAAAGGCCGCCTCAGCAAAGATGACATTGATCGCATGGTGCAAGA E N K I T I T N D K G R L S K D D I D R M V Q E> AGCAGAGCGTTATAAGGTAGAGGATGAGGCTAACCGAGAACGAGTAGTCTCCAAAAATGCCCTGGAATCC A E R Y K V E D E A N R E R V V S K N A L E S> ${\tt TATGCATACAACATTAAGCAGACTGTGGAGGATGACAAGCTGAAAGGCAAGATTAGTGAGCAAGACAAGC}$ Y A Y N I K Q T V E D D K L K G K I S E Q D K> Q R V L E K C Q E V I N W L D R N Q M A E K E E> ${\tt ATTTGAGCATAAGCAGAAGGAGCTAGAGAAGCTTTGTAACCCCATCATTGCCAAATTGTACCAGGGTGCA}$ FEHKQKELEKLCNPIIAKLYQGA> GGAGCTGCAGGTGCTGGTGCTCCAGGTGGTGGTCCCACTATTGAAGAAGTAGATTAAGATACCATGGACT G A A G A G A P G G G P T I E E V D * AGACTGTATGAGCAATTGCCATCTGCTCTACTCTTTCCCCGTGGCGTCTGGGGTGTGTAAGGGAGGAGGA 2130 2140 2150 ATTATCTTGCTCTACTTTATTGGAAAGCATTGCCAGCTCATTTTGTTGCAGATGTTTGCCTTAGTATTAA GATGTCTATGCTAATTGGTGGATATTTGGTTTTTATGTTCAATGTTGTAAATATCTACTTGAGCATTACA

PDI (GenBank accession No. AY691666). The deduced amino acid sequence is shown below the nucleotide sequence. A potential Cterminal tetrapeptide is underlined.

GCTGAAGATCCTGTCGTCGTCGTCGTCGTCGTCGTCGCGCCATGAAGCTCCCCCGTTTCTTCGCTC MKLPRFFA> CGGCGCTGTGTTTGCTTTGGCTGGGTCAAGCCTGCCTCGCCGTCGACATCGAGGAAGAGGAAGGCGTGCT PALCLLWLGQACLAVDIEEEGVL> GGTGCTGAAGTCTGCCAACTTCGACCAAGCGCTGGAGCAATACCCGAATATCCTGGTGGAGTTCTATGCA V L K S A N F D Q A L E Q Y P N I L V E F Y A> CCATGGTGTGGTCACTGTAAAGCTCTGGCACCTGAATATGTGAAAGCAGCAGCAGCAACGTTGAAAACTGAAA PWCGHCKALAPEYVKAAATLKTE> ATTCTGAAATCAGATTGGCTAAGGTAGATGCTACAGAAGAATCTGAACTCGCCCAACAATTTGGTGTTCG N S E I R L A K V D A T E E S E L A Q Q F G V R> AGGTTATCCTACTATCAAATTCTTCAAGAATGGAGATAAGTCTGCTCCCAAAGAATACACAGCTGGCAGA GYPTIKFFKNGDKSAPKEYTAGR> GAAGCAAATGACATTCTAAATTGGTTAAAGAAACGCACAGGACCTGCAGCCACTACCYTGGCAGATGTAG EANDILNWLKKRTGPAATTLADV> ${\tt CTGCTGTGGAAGAGCTAGTGGAATCCAATGAAGTTGCTGTGATTGGATTCTTTAAGGATGCAGAATCTGA}$ A A V E E L V E S N E V A V I G F F K D A E S D> TGTGGCCAAAGAGTTTCTGTTGGCAGCAGAAGCCACTGATGACATTCCTTTCGGGATCACTTCCAAAAGT VAKEFLLAAEATDDIPFGITSKS> GATGTATTTGCCAAATACCAGCTCAAAAAAGATGGAGTTGTTCTTTTTAAGAAGTTTGATGAAGGTCGTA DVFAKYQLKKDGVVLFKKFDEGR> ACAATTTTGATGGGGAAATAACAAAGGAAAACCTGCTGAATTTCATCAAAATCAAACCAGTTACCCTTAGT NNFDGEITKENLLNFIKSNQLPLV> GATTGAATTTACCGAACAGACTGCACCTAAAATTTTTGGCGGAGAGATTAAGACACACATCCTGTTATTC I E F T E Q T A P K I F G G E I K T H I L L F> TTGCCTAAGAGTGTTGAGGAATACCAGAGTAAACTGGATAACTTCAAAACAGCAGCTGAAGATTTCAGAG L P K S V E E Y Q S K L D N F K T A A E D F R> GAAAGATCTTGTTCATTTACATCGACAGCGACCATAGTGACAACCAGAGGATCTTGGAGTTCTTTGGTCT GKILFIYIDSDHSDNQRILEFFGL> CAAAAAGGAGGAATGCCCTGCCATACGCCTTATTACTCTGGAGGAAGAAATGACCAAGTACAAACCAGAA KKEECPAIRLITLEEEMTKYKPE> TCCAATGATCTGAGTCCAGAGAATATCAGGGACTTCTGCCACAAGTTCTTGGATGGCAAAGTTAAGCCCC SNDLSPENIRDFCHKFLDGKVKP> ACTTGATGAGCCAAGAGATTTCTGATGAGTGGGACAAGCAGCCTGTCAAAGTTCTGGTTGGAAAGAACTT

H L M S Q E I S D E W D K Q P V K V L V G K N F> 1200 ~ ${\tt CGAAGAGGTGGCTTTTGATGAAAATAAGAATGTCTTTGTGGAATTCTATGCTCCCTGGTGTGGCCACTGC}$ E E V A F D E N K N V F V E F Y A P W C G H C> AAACAGTTAGCTCCTATTTGGGATAAACTTGGAGAAACTTACAAGGACCATGAAAACATCATTATTGCTA K Q L A P I W D K L G E T Y K D H E N I I A> ${\tt A} {\tt G} {\tt A$ K M D S T A N E V D I V K V H S F P T L K Y F P> A G P D R T V V D Y N G E R T L E G F K K F L> GAAAGTGGTGGAAAAGATGGTGGTGTAGATGAGAACGATCTGGAAGATCTAGAGGATGCAGAAGAGGAGC E S G G K D G G V D E N D L E D L E D A E E E> CAGATTTTGAAGAGGAAGAAGAACCTGCACCTAAAAAAGATGAACTGTAAACAGAAGTCCAATCTGCATA PDFEEEEEPAPK<u>KDEL</u> TCCCCAGACACTGTGCTGTGGCTGCCAACTCAAGCAAGTCAGCAAATCAACTCTAAACAGAAGACTGAAA 1790 1800 GAAGAAGGATCTGACTAGTTGGCAAACTGCTGGGTCTTTTTTCTTGTCTTTTTCTCTTCTTTTCTCTTTTCTCTTTTCTCTTTTC AAACTGTGATGTACATTTCCTTAGAGTATTGCGGCCTGGGTAGAAGCACATTGAAATGATAATATGTCCT ATTGCCTAACTAACTTGGGAATTTCATGAGTAAGGCATCCTTAAACATTAATAACACTTTGTCTAAATGA CATATGCTGCTGTTGACCCAGCAGGCTCTTGGATATTGTCCCAGCTTTTTTCCTTATGCTTTTGATTGT 2070 2080 TGTTGTTTTTTTTTTTTTCTTACCCCGGACCATTCCAGTGTGGAGGAAATCACTAGGCTGACCAAGGGAATAAGTG **GGGTATAGTAGGTCCTCTTAACTATTTGCATAGTCTCATGTCCTCTTTATATACTGTACAATTGATTTCT** GTCATCCAAAGATCTGGAAGGGTAGGAAACCATTGCTGAGGAATGAGAGTCCAATTGCCTTCTTACCTAA AGCGAAATCAAACTTGAGTTGCTATCTCACCTGCAATGAAACAAAAGCCTTGCTATCTACACGTTATTTT 2340 2350 2360 2370 GCAATGGGTTTTCTGGGAACTGTTGGGAAATAACTTCTCTGAATCTAACAAAAAGGACACTTGATAACTA AGGAGTTTTGTGGGGGATACTTGAGAGCCATGGAAAGTCTGTATTACAAAGAGGATGAATTCATTTTAAGC

Elongation factor 2 (GenBank accession No. AY691668).

R14 nucleotide sequence using T3 primer

GAATTCGGCACGAGGCTCATGATGGGACGCTACGTGGAGCCCATTGAAGATGTGCCTTGCGGTAACATCGTAGGCCTGGTTGGCGTCG ACCAATTCCTGGTCAAGACGGGCACCATCACCACCTTTGAACACGCCCACAATATGCGCGTCATGAAGTTCAGCGTCAGCCCCGTCGT GCGTGTGGCGGTGGAGGCCAAGAACCCAGCCGACCTGCCCAAACTGGTCGAGGGCTTGAAGAGGTTGGCCAAGTCTGACCCTATGGTG CAGTGTATCATTGAGGAATCTGGAGAGCACATCATAGCCGGAGCCGGAGAACTGCATTTGGAGATCTGCCTGAAGGATCTGGAGGAGC TCAGCCCGCCAGGACCTGAAGCAGCGGGCCAGGTACCTGGCCGAGAAATACGAGTGGGACGTGGCTGAAGCCCGTAAGATCTGGTGCT TCATGGAGCCAATCTATCTGGTGGAGATCCAGTGCCCTGAACAAGTTGTGGGGTGGCATTTATGGCGTGCTGAACAGGAAACGAGGCCA CCAGCCGCCCTTCTCAAGTGGTCAGTGAGACACGGAAACGCAAAGGGCTGAAAGAGGGCATCCCCGCGCTGGATAACTTCCTGGATAA

CGI protein (GenBank accession No.AY691669).

R9 nucleotide sequence using T3 primer

CGATAATGCCACGCAGTGCTTCTATGAGGAGATCGTGCAGGGCACTAAGTGTACCCTGGAATTTCAGGTGATTACTGGAGGACACTAT GATGTTGATTGCCGCTTAGAAGATCCAGATGGGGCTGTGCTATATAAAGAAATGAAGAAACAGTATGATACTTTTACCTTTACTGCAT CTAGAAATGGAACATATAAGTTTTGTTTCAGCAATGAGTTTTCAACTTTTACACACAAAACAGTATACTTTGACTTCCAAGTTGGGGA TGATCCACCTCTCTTTCCTAGTGAAAACAGAGTCACTGCACTTACTCAGAATGGAGTCAGCATGTGTTTCAATTCATGAAGCTCTAAAG TCTGTCATTGATTATCAGACACATTTTCGACTGAGGGAAGCACAAGGCCGTAGCAGAGCAGAAGACTTAAACCCCCCGAGTGGCTTATT GGTCAATAGGCGAAGCCATCATTCTACTTGTAGTAGCATTGGGCAGGTATTTCTTCTCAAAAGCTTCTTCTGACAAAAGAACCAC TACAACACGCGTTGGATCATAACAGTCTTTAAATCCATTGTTTGAAAAATATATTATTATTAGAATGATTCTAGTTAAAGACATTCAG

Gene 2.19 (GenBank accession No. AY691670).

R 7 Nucleotide sequence using T3 primer

TGTGGGCAGGAGATGTGAACGAGCTGCTAAAATTCATCCGGTCATTGCACGAAGGGACATTGGTATTTGTTGCTTCTTATGATGATCC TGCTACAAAAATGAATGAGGAGGCCCGTAAAATCTTCACAGAATTGGGCAGCAAATTTGCTCGGGAACTGGCTTTTCGAGACAGCTGG ATCTTCGTTGGAGCCAAAGGAGTGCAAGACAAGAGTCCCTTTGAGCAGCACATGAGAAACAGCAGGAGCTCCAACAAGTACGAGGGGCT GGCCCGAAGCCCTTGAGATGGAGGGCTGCATTCCGCAGCGAACCACTGAGGTCCTGTGAGGATCTGTTTCTTCAAAACTTGAAGTGAA TTTTCTCATGGGAGCGGGAGAAAAAAGTCTCCAGTCTTCCACTTATTGTTGTCTACCCTTATTGTGGCAGCTGCCTTTTTTCCTTCTCC CACAGTGGCCTGTTTGGCAGTGCCTTAATAAGCTAACCAGTTGCCTTTTCAGAAAGTTTCTTGCCTGGACTTTGGGAAGGAGACGTGT AACACTCGTATTGCAGATAGTCTCCTTCCTCCTAGGCCTACATTTCCCGGTGAAGGCTA

BET 3 (trafficking protein) (GenBank accession No. AY691670).

<u>R 140/R 141 nucleotide sequence using T3 primer</u> ACAAAATGGCACGTCAGGGCAGCCGAGGAGGCTCCGAGAGCAAGAAAATGAGCTCGGAGCTCTTCACTTTGACGTATGGGGCTTTGGT CACTCAGCTGTGTAAGGACTATGAGAATGATGAAGATGTGAACAAGCAGCTTGACAAAATGGGCTACAACATAGGTGTTCGACTTGTG GAAGACTTTCTAGCACGATCCAACGTTGGGAGATGCCATGACTTTCGAGAAACAGCAGACGTAATTGCAAAGGTAGCATTTAAAATGT ACTTGGGTATCACACCCAAGCATCACAAACTGGAGTCCAGCAGGCGATGAATTCTCCCCTTATCCTGGAAAACAATCCACTGGTGGAGTTT TGTGGAATTACCAGACAACCATTCCTCTCTTATTTACTCTAACCTCTTATGTGGAGTGCTACGGGGAGCCCTGGAAATGGTACAGATG GCTGTGGATGTCAGATTTCTTCTGGACACCTTGAAAGGGGATGGAGTCACAGAAATAAGGATGAAGTTTATCAGGCGGATCGAAGACA ATAGTACCCTATGTACTTTGAGACACTGACTGGTTAAGACGTCAATTCATTTGAAATAGTCTGTTTATTTCCACAGATTTCTATTAAA AGCTTTTGTAGGATGCAGAACTCTTTCACATTCATCAGAAAAACACCAAGGGCA

Polyposis.

R117 nucleotide sequence using T3 primer

AAGTTCCTGCACGAGAAGAACTGGCTGAACAATGTGCTTGGTAAAATTGAGAGCAAGACCGGCGTCAGCAGGTTCCTAACGTCTGCCA ${\tt TGGCCCCAAGTCCCTCAAATGGAGCAGAGTTCCTTTATCAGCAAAATTTATCCGCCCTTTCGTTCTTGAGGCATGAGGCTCAGCTGGGACAACAAAGTTTATGAAGGAGTTTAAAAAAAGGCTGGAGGAGACAACAAGAACAACAATTACAAAGGGAAGTTAAAAAAAGCTGCAATAAATTTA$ actggggactgtgatacagtaatttgaagtaatgttgccttgtaacgctttttgaagttntaagaAga

Polydenylate binding protein (GenBank accession No. AY691673). R 19 nucleotide sequence

RW 21. No matches

RW21 nucleotide sequence

TGTTGACCGGNTAACAATTCACACAGGGAAACAGCTATGACCATGATTACGCCAAGCTCGAAATTTAACCCTCACTAAAGGGAACAAA GCTGGGAGCTCCACCGCGGTGGCGGCCGCCCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGGCACGAGGGGGTACCGGGCTAT CGCGCTGCCGCCATGGCGCTCTACAACTTCAGGAAGATTATGGTGGTTCCGTCGGCAAGGACTTCATTGATTTAACATTGTCCAAGA TGCGTCTGATGAAATACGGGGATTCCCCTCTATCGATGCAAACAGTTGAAACGTGCAGCCTTGGGACGGATGTGACCATAATCAAAAG ACAGAAGCAGAGCCTGGAATATTTAGAACAAGTGCGCCAGCATTTATCACGATTGCCAACCATTGATCCTAACACACGAACTCTCCTG CAAAATCTCTGTTTGTGGACMACATGATAACADDTMTTTGCGTTGGCAGGTCATAGATACTCCTGGTATTTTGGATCATCCTTTGGAA GAGAGAAACACCATCGAGATGCAGGCTATAACTGCACTTGCCCATCCTCCGGGTCTCTGCGGTGCTCTATGTCATGGATGTATCAGAACAG TGTGGCCATAGCTTGGAAGAACAGCTGGCACTGTTTGAGAATATTAAGCCATTGTTTGCCAACAAGCCTCTAATTATTGTAGCCAATA AATGTGATGTGAAAAGGATTTCTGAACTTTCAGAAGAAGAATCAGAAAATATTTGCTGAATTAGAAGCTGATGGACTTCCTGTGATTGA GACAAGCACTATGACAGAAGAAGRTSTTATTCGRKTTWRAMCTGAMSCTTKTKATYAGRTKRKYKGMYCWTCGCKTTASCACSAATWA TSARASGAWWSAWAGTGMWYGRTGYACTGMACAGGYTWSWWWTARCTNCGTTGCCTCATWCMMAAAGRGACAGCAAKKWRMGGYCYYC TGAACAAGAGATGACAAACCTGGGAGTTGGTCTACCTGGCAACATTGAGGGAAGGAGGTCACGCAGTGTCACCCCGTAAACGTAAGCGA GAAGATTCTGAAGAAGGTGCCTCAATGCCAGTAAGTNNNAAAGGCTCTCGGTCCCCCCTCGTGATGTCTCGGGCTTCGGTGATGCTAAGA TGGTGAAAAAAGCAAAAATTATGATGAAGAATGCTCAGAAGGTAATGAATCAGATGGGCAAGAAAGGCGAGGCGGATAGAGCTGTCTT GTTGNCTCT

R26. No strong matches by comparison to peptides within the BLAST database.

R 26 nucleotide sequence using T3 primer

Peptide similar to archease.

R 36 and RW 26 nucleotide sequence

R 38. No matches.

R38 nucleotide sequence using T3 primer

AATTCGGCACGAGGCTTGTTATGTGTCTTTGTACCCATGTATCACGTAGGACTGAAACTAAAACTATAGAAGCTGTCAATTTGCACAT ${\tt TTAGAATTAATAGCAGCTGCTTCTAGAATTGAAGCATACAACCATTTCCTGCTGCTTGTTGTGTACATTCTGCACTTTATGTAACT}$ ${\tt GACCCCATCTGACCGGAGCCTGATGAAGCAAAAGGACAGTGCTCCAAGGGTGGATACCAAGATAACTGGTCTAGCAGTTATGGGCTGT$ ${\tt GTGGGGGTTTTCAGGAAGCAAGATTGTAATTACTGCTGGCTTTCAGTCTCACATGAATAAAACTGTAAACCGTAATTGTACCTTATCC$ ${\tt GTGTTCTCTAAATGACCAGAAAACTTTTATTTCAATGGGTAAATGAATATGTTAAAATTCCCTTTGAGACCACAAGCCTCTATACCCA$ AACATACCTTGATTTACCTGAAATGTATTTTCTTTAAGGAAGCCTGACTTGGTGCAAGGTAGCACCAAATCCTATTATATTTACTCTT CCATGGTCTCTATAGGGCTGCCACCATCCTGTTACGTCTTAAGGTCGTGATCTTTTCACATCGTAATCACACTAAGTCATAATGCAGT GGTACCAGATTTGGGGTACAAAAGCCCAGATGAATGCTACAGGGAAGCAAAGATTTGCTGCCATTAAATGGAAGTCTAGATTTTTATA ATACAGTACAGTACATAGTGGTTTGTTTATTCTTTGGTGTAGTGTATGAAGCTAAATATGCTTTTTCTGCTAGTTTCACTATGCCTCC ACAGCTAAACACGTTTTTGATAGGTTGTCTTGAAATCAATTAATACATCTAATAATGGTTGTATTTGGAACATGCTACATTTACATTG TCCAGATTCTCGCCAGCATCCAATTTTCAGTTATGTAGAATGAGAAACTACATCACTGTTAGAGCTATGTTGCATAGTTGTGCTGGAA AGTGGATGCGTTTTTGAGATGGCAAATCTTCAGATAATGAAAAATCACAATAGTAAGGAAACCACACCCAAGTGATACAATCCTACATGA ACTTATGTTGATATAATTTATTTTTAATTCAGCATGTTTAAATTATAGGAAAGCAGAGAACTCTTAAGGAAAAATAAACAGAAGCAAT GGTATCCCATAGAGGCAGAT

R 39. No matches.

R 39 nucleotide sequence using T3 primer

R 42. No matches.

R 42 nucleotide sequence using T3 primer

AAGACCCAGGCCCATCCCCTCTGCATCCTAGAGCATGCAGGGAGAAACGAAAAGAGAGCAATGTGAGTTGTGTGGGCTTACGGGGGAG GAAAGGGCCTTGATTCCCTTCATTAACTGCAGCTGGGAACACGGTGTTTTAAAAGGGAAGCTGCGTGCAGCAAGCTGTTGGGAGCAAA ${\tt TCGTGAATTTATCTGGTATTGTGGGCTTATCTGCGTTCCTGGCGTCTTCCCAATTGTGTGAGTTTTGCCATGCTTTCAAGGCTGAAAGT$ ${\tt TCTTCTTGCTTATTTGACTGTGTTGCCTTTGTGCCACGCCCCGAGTCATCACAGAAGATAACAGTATTCCGTGCACCCCGGCATATAT$ ATATATGCTGGCCACATGACCACGGAAATTTTCTTTGGACAACGCTGGCTCCCTCAACTAAGAAATGGGGACGAGCTGCAACCCCTAG AGTCCGAGACAACTGGAAAGGGGGAAACCTTTATCTTTGTTGGTAGTCATAGGAAAATAAACGTTTCCAGTACATCCTGAAGTGGCGT TTTGTATCTGTGGTGCTGCAAAGATCTAATGTTCACTTCACCATGGATTGCTTAACTGCCAAATGCTATAAGCATTTCAGTTCACTTT GGGATGTGTGTATTGTGAAGCCAGGATTGCAGTCAGTAAGTGACAGGTAATAGAACAATAGTTTAGTATGATGTGACAATTTGGTAAT ${\tt CATTAACTATTTGATGATGCTATTTGGATGTTTATAAGAGGGTCCATCAGCCCGAAGTAGCTATATTATAATGAAGTATGGTCCTGTG$ AAATCAGGAAGGCTTAAACTATAATAATAACAGAATCTTGCAAGTCTGTGTATGTTATATCTTTTCTTCCTACTTAACAGTTCAGAGA attagaaagttttctgtctgagcctcttctgaatattatctgcctgttgcggacgtaaaatatgttttactgttcattgtcctggcaa TGGAACTTGCAAATCCCCATCAAAGTTGTCATCTTTATTCTCTATGGTACTTTTGGGTCCTTGGTGTCAGTGCATGTGAGAATGGCCC CTGCTGTTCTCATTAGTGGCCCGTAGGCACCATATCCTATCCTGGTATTGAATTGTCCACTAACGCTCAGCCAAGAACCCCAACAGTG AACCCTGGAACTATGTATAAGTTCTAATATTGGAACAAGGAAATGGGGAAAAGTTTGACCTAAATTCTTTCATTATATCTATGTTGCT GGCATAATCCTTTGTAATTTCTGTAGCTCCGACCAGATGGGGCTGGTAAATAGAATTTGTAGTGTAAAATTTCTACCCAAAATCACAT TCTATTTTAAAAGCCTAATATTTGCCCATCCAACATTATTCTTGGCCTTTTAAATTCCTTTCACGGCCTTAGGAAAATCACTTTAAAA ATGTGAATAATCTGGGTATTTTGTTTAACTTCTGTCTTGCAATTTCATGGTAATAAATGTGTCGGTCCTTTGTCTGTTTTTTCAAAAG TAAAAGGCTATAAAGGCTTGCCAGATTTCTGTGAAAAGATCCACAAAGAGTAAAATGAAAAACAAGTTGTCAGTCCTTAAGCTGTACT AATAAATGTGATGCCCACCCATCCATCTCTCTTTGTTTTACCATGCAATAATATCATTAAAACCATTGGTGT

R46, RW32. No matches.

R46 nucleotide sequence

AGACACTCTTGCTTATTTAGGTGTCTTCTTCTTAATAACAAATGGGGAGGTTCCAAAAATGGGAATGAGTCAGTGGGCATGACATCATA ${\tt GCAATACAGGACAGACGAGACAACTTGTCTCATAACAAGCTGACCTTGTGGCCTTGAAGCATGATCCTTGCACAGCCCCATCATTTAC$ AGTTTGGATTATGGCAGGTGGAAATATGAAAAATAAATACATAATAGTTGATAATTAAGTTATTGGGAACTATTTTTTAAAATGGAAA AGAGCCATTGAAAAACTTACTCAATGAAATTAAATAGCCTTGAAGAAATATTTTTGCACGAAGGATGCAGAACATCTTTTTAACAAAT ${\tt GTGTCGTTGATTATTTCAATGGCAGGTTTTTAAATTCTGATGAATGGAATATTGAAGGAAAATGGCAGCTCTTCTTTTACTTTCTGGC$ AATTTTTTTGAAGTAAAGTTTTGACTGTGTTTAATCAACTTTTGTTAAAATAACTGTTCCAATTTTAACTCTTCAGAAGCCAGTTGAA ATATTGATCAGAAATTATGATCAAAATTATGCTCAAAGGCTCAGGACAAACTTGATAAGCTATAATACTGTACAAATTTAGGCAAATGTAC AATTTTTAAAATGGAAACAAGTTAATAGAGGTATACACAATGACCATGCTAAAGTTAATCAGAGCATGTCATTAATGGTGGATGTGTA TTCTTCTTGAAATGTTACATCCTTGCTTTTTTTTTTTGTGGGGGGGCTTGAAGAGTTAAAAAAATCTAAATGTGAAGTTTGTAGCTTGTT GTATTTGACTTGTTTCTTGACAGTTAGAATTTGTCTTTATTCCAATCATATTGTTTTTAAGTCTCTTCTGTGCAAGCTTTAAAGGATG ${\tt cattcttgccaactcacgtactggaagatcgcttgtcagataaataccactttggacttaaatgtcaattatataaactgacaaaccttgacaaaccttgacaaaccttgacaatgacaaaccttgacaaaccttgacaaaccttgacaaaccttgacaaaccttgacaaaccttgacaaaccttgacaatgacaaaccttgacaatgacaaaccttgacaat$ ${\tt CAGCTAATCAGTATTATCCTTGTAGATCACCATGTCTTTCACATATCAAACTTGGACCACCTCTGGGTGTCTAAAAGCATTCTTTGAG$ TTTGTTTGCATTTTCTTCCGCTTGCTGGTAATTGTGTTTTTAAATGCAGATGTGATGTAATCTTATTTTCTTTGGATCAAAGCTGGAC TGAAAATTGTATTATGTAATTATTTTTGTGCTCCTTAATGTTATTTGGTACCTAAGTTGTAAATAATGTCTACTGCTGTTTATTCCAGT ${\tt TTCTACTACCTCAGGTATCCTATAGATTTTCTTCTACCAAAGTTCACTTTCACATTGAAATTATATTTGCTATGTGACTGATTCCTAAAGTTCCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGATTGCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGAATTGAAATTATATTTGCTATGTGACTGAATTGAAATTATATTTGCTATGTGACTGATTCCTAAAGTTCCTAAAGTTCACATTGAAATTATATTTGCTATGTGACTGAATTGCTAAGTTCCTAAAGTTCCTAAAGTTCCTAAAGTTCCTAAAGTTGCAATGTGAATTGTGGAATTGTGAATTGTGGAATGGAATGGAATTGTGGAATGGAATGGAATGGAATGGAATGGAATGGAATTGGAATTGTGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAAGGAATGGAAGGAATGGAAGAAG$ GAGTTCCAGGGCTTAAGGGCACCTTATTGTGCAAGTAAATTTTAAAGATCTCTGGGTTAAGAAAATTTGGCTTCGATTATATTCTTTG ATA

Endocrine regulating (GenBank accession No. AY02468).

<u>R 50 nucleotide sequence</u>

GAATTCCGCACGAGGATCTCAATGAAGATTTTCCCCGAACTTGAAAGTGCTAGAAGGAAAAGAAGAAGAGGAACTGAGCAGAAATCT GAGTCGGGAACTATCAGGCAATAGCTATGCGATGACTGGTTCAACTAATCCAACGAAATCTTCTGAACCTCAGTACCATTATAGACCT GATGAGGCACCAGCAATGCCCAAAAAATCTATTTTGAAGAAACGTGTGGATGATCATCCTGTACAGCCTGAAGTCTTTTCTAGCGGTT CTTCCTCTATTAAAGATCCCCCACTTCTTTCAAATCATTCTTTGCCCCAGCGTAGTAGCGTTGCTCCTTTTTCATTGGAGGTAGAGAA TTTCCTCAAAACAATTCAACAAAAGTGCAGTTGCAGAGTCTACCAGTAAGGAAACTCAAAGCAGTGAGCCTGACTGGAGACCATTTTCT GGTCCACATCAAAATACACTTCCTACTGAGCAAAACTCTGAAAAATTTTCTAAAAACAAAAAGAGTCTCATGAGTCAACATCAGAGTCTG CATGGCAGACTCTAAAGTAATATGGAAGAAGAAGAAAAAAGGAACCAGGTTTCCTGAATGACTCGAGGATAGAGAGAAATTCTTTATGGT CTCCACTCCTTACAACTGTAAAACAAACATATAGAATTGAATCCAGACCAGAGTATAGAGAAGATTCATAGTTTTGCTTTAAAAAACTAT TGGTCTTGACATTGGGGTGGCCGAAATAGGTAAACTTGCTGCTCGTACTCAGGAACGTCTTCATGGGAAAAAAGTCATCTCGTATCAC CTGATCGCTATATCAGTAAGCTATCTATCCAAACCAGAAAATGTGGGAGAGGCGTCGCAATCGCAGTGAAACTTATTCTCCAGAATCAA ACCAGAAGCACTCTCTCTCACCTACTAGTTCTTATCCATTATCTAAAGTTAGATCCTCTGTTACAAAATCTGAGCACAATACAAGCAA AATGTTAGGACGAGATAATCCTCCTGACACAGTTGAGCAGTCTGTTCCTCCACTATCTCTAATTCCATCAGCTCCACCATCTTCCT AATTTGTCACCTACACCCACCTCTGTTTCCCCATACAGACTTCCCAAGCTTTTCACCTTTTCCTACACCACAGATTGCCACAAAACTATC GACTGACCCTGGGCTTACAGATATGCATGGACTTGTCACACTAACAGTGCCATCAAAATCCAACACGGCCCAATCTTAGAGTTATTGAG ACCGTTTCCACAGCCAAAGGGACTCCTGATACCAAAAGAGATGACTCTGTGCTTGTGCAAATCCCTACAGTAGCTTCTTATTCAAAAT TACATCCTCAGTTCTCCAACCTTCATTAAGAGGTTCCAAGGAAAGAATACCTGATGAAAAAAATCGAGCTTCTAGGAAACAAAAGGT ATAACATTGCGAAGGAAATAGCTCAGCTGAAGATGAATGCTGATGCTGCAGAGAAGAAACAATCTGAACTTGACAAGGTAGCCCAGAT CCTGGGGATTAATATTTTTGAGAAAATCCCGGAAACTATCTTCAGAAAGTAAAGAGTCTTCAGAAAATGCAAGGACTCAGGAGAAAACT TCTGATCTAGTCAAGGAACCAAAAACTAATAGTGACAGATTCAAGGAAAAGAGTCCTAAGCCTACGGAATCATCTTCACAGCCATTGC AAGGGACCAGTATTTATGACTACTATGATACAGGGAATCATTGGTGTAAAGATTGCAATACTACCTGTGGAACTATGTTCGATTTCTT CACACATATGCATAATAAGAAACATAGACAGACCCTGGATCCATATAATAGACCCTGGCAGCAAGACTCAAATGAAACAAAGCAGGAA GTCACAAACGAATTGACAAAATACTGTCCAGCCAAAGTTCTGAATTCTTATCCCAGTCACTGGATACTACTGCAACTCTGCAGCGAAT ${\tt ctttggagacagatatcagcagaacaacatgtcaaagtcatctacataatgagaaatataagaaacatgtggatgagaatcctctgta$ TGAAGAAAGGCGGAATCTGGATCATCAGGCAGGATTGTCTGTGATTCAGGAAACTGAACGCAGGCTGAGACGGAAACTGTGTGAAAAA

R 52. No matches

<u>R 52 nucleotide sequence</u>

R 54 and Ron 3

R54 nucleotide sequence

229

Incomplete cDNA clones

HSP 90 (GenBank accession No. AY02457), missing internal sequence. Could not sequence from 790 to 993. Tried Pst 1 deletion, and used 8 different primers from different locations both plus and minus, all failed. Perhaps there is some secondary structure here that is causing a problem?

(5')R 37 Nucleotide sequence from mass excision

T7 sequence (GenBank accession No. AY702458)

GATGAGGAGGAGGAAAGTGGCAAGAGCAAAAAGAAGAAGAACAAGAAGAAGAAGAAGTATATTGACCACGAAGAGCTGAACAAGACCA TTTGGCGGTCAAGCATTTCTCTGTGGAGGGGCAGCTGGAGTTCCGGGCGCTCCTCTTCATCCCCCGTCGGGCTCCATTTGACCTTTTT GAGAACAAGAAGAAAAAAGAACAACATCAAAACTCTACGTCAGGAGGGTCTTTATCATGGACAGCTGTGATGAACTCATCCCAGAATATT TGAATTTTATTCGAGGTGTGGTGGATTCTGAAGACCTGCCCTTGAACATCTCCCGTGAAATGCTACAGCAAAGCAAGATTCTCAAAGT GATTCGCAAGAACATTGTCAAGAAATGTCTGGAACTTTTTGCAGAGTTGGCTGAAGACAAAGAGAACTATAAAAAATTCTATGAGGCC AGAACAAGTGGCCAACTCTGCTTTTGTGGAACGTGTGAGAAAGCGTGGTTTTGAGGTGATATACATGACGGAGCCCATTGATGAGTAT AGAAAAAAATGGAAGAGAACAAATCTAAATTTGAGAATCTTTGCAAATTAATGAAGGAAATCCTGGAGAAGAAAGTTGAAAAGGTGAC AGTTTCAAACCGGCTAGTTTCTTCCCCCCTGTTGTATTGTCACCAGTACCTATGGCTGGACAGCCAACATGGAACGTATCATGAAGGCC CAGGCTTTACGAGATAACTCTACTATGGGCTACATGATGGCCAAGAAGCATCTGGAGATAAATCCTGATCACCCCATTGTAGAGACTT TGCGTCAAAAGGCTGAGGCAGACAAAAATGACAAGGCTGTCAAGGATCTAGTGGTACTTCTTTGAAACAGCATTACTTTCTTCGGG TTTCTCCTTGGAGGATCCACAGACCCACTCTAATCGGATCTATAGAATGATCAAGCTGGGATTAGGAATTGATGAAGAAGAAGTTGCT GAGCAGGAGCTGATCTTCCCTCTTTTCCCTCCTCTTTTTTCCCTGTGCCATCACCTTGCTCAGGAACCCTGGCAGTGCTAACTGC AACATGCTGCTTTAGGGGAAAAGGGTCAGTCTAATTGTTCAAAGGTTTTTTGCTCCCTGTCCATGAAGATTTTGTTGTAGTTTTAGC ${\tt TTGACCACCAAACATCCATCCCACTATAGCTGAAGTAAACACCCCAGAGAATGTCCTTTCCAATAATATAGCAGTGAGACTCCTGCCCC$ ${\tt GCCCATCTCCGCTGCTGTTGTCTTGTCTTGAGAAAGCAGGGACTTGCAAGTCTTGTTCATGTATTTGGTTTTGTTCTACTGGAATTAA}$

Elongation factor 1 (GenBank accession No. AY702459)

<u>R 129 T3 nucleotide sequence</u>

AGATGGCGGTGGCCGGGACTCTCTACACTTACCCCGAGAACTGGCGGGCATTCAAAGCCCTCATTGCTGCTCAATACAGCGGGGGCCAA GATCAAAGTCCTCTCCACGCCGCCCCAGTTCCACTTCGGGCAGACCAACAAGACTCCTGAATTTCTGAAAAAATTCCCAGTTGGAAAAG GTTCCGGCGTTCGAAGGAGAAGATGGATTTTGCATATTCGAGAGCAATGCCATTGCACACTACGTCAGCAACGAGGAACTACGAGGCA CAACTCAAGAGGCCGCTTCCCAGGTCCTTCAGTGGGTGAGCTTTGCTGACAGCGACATTGTGCCTCCA GCC

V abelson oncogene (GenBank accession No. AY702460), no internal sequence R 21 T3 nucleotide sequence

Ron 6 24/5/03 T7 nucleotide sequence (GenBank accession No. AY702461)

Lecithin Retinol or disease resistance protein (GenBank accession No. AY691672) R20/R 31 T3 nucleotide sequence

G Protein binding protein, no internal sequence

<u>R 32 nucleotide sequence using T3 (GenBank accession No. AY702469)</u>

RW 24 T4 nucleotide sequence using T7 (GenBank accession no. AY702470)

Ca ATPase (GenBank accession No. AY702462)

R122 nucleotide sequence using T3 primer

Golgi associated (GenBank accession No. AY702463)

R 62 nucleotide sequence using T3 primer

Carboxypepsidase (GenBank accession No. AY702464)

<u>R 136 nucleotide sequence using T3 primer</u>

Carboxylate (GenBank accession No. AY702465)

R 135 nucleotide sequence using T3 primer

Myosin Light (GenBank accession No. AY702471)

Wel 13 nucleotide sequence using T3 primer

Myosin heavy, superfast (GenBank accession No. AY702466)

R 48 nucleotide sequence using T3 primer

Alpha Actin (GenBank accession No. AY702472)

<u>R 133</u> nucleotide sequence using T3 primer

Beta actin (GenBank accession No. AY702473)

R8 23/3/03 nucleotide sequence using T3 primer

Ribonucease HI large subunit (GenBank accession No. AY702467)

R 59 and RW 35 nucleotide sequence using T3 primer

Ribophorin (GenBank accession No. AY702474)

R 45 nucleotide sequence using T3 primer

CTGGCTTTGGACCCCAGCTTGGAGGACACCAAAATCTACCTGGGGGCGCAGGTGAAAGCTGAAGAAGAAGAGGAAAATATCCTGGAGG TAAAGGAGACAAAAGTAAAAGGTAAAAGTGGCAAATTCTTCACTGTGGAAATTGCTGGCTCCTTTGCCTCCAGGTGGAAAAATTCGTTT ATCTATTGAAACCGTTTTCACACATGTCCTGCAACCCTACCCCACCACCACTGTGGAAACTGGCCTCCAAGAAGACGAGTTGTGGGTTTTTGAAGGT AATCATTATTTCTACTCTCCATATGTAACCAAGACCCAGACAACTCGTGTGAAACTGGCCTCAAGAAACATTGAAAACTACCCAAGT TAGGCAATCCCAGCCGCTCAGAGGATATGATTGAATATGGACCCTTCAAGGATGAACCCCACCACCATTGAAAACTACCATTAAGATACA TTATGAAAACAACCGTCCATTCCTGACGATTACCAGCATGATACGGTCTCACTGGAGGATAACCTTGAAGAACATTGCAGTTGAAGAACATTGAAAACTACA TAAGGAAACAACAGTCCATTCCTGACGATTACCAGCATGATACGATCCCTTCCAAGGATGTCTCACTGGGGTAATATTGCAGTTGAAGAA AACGTTGACTTAAAGCATACAGGAGCTGTACTCCAAAGGACCCTTCCCCGATACGACTATCAAGACAGCCCAGAA

RW31 T7 nucleotide sequence (GenBank accession No. AY702475)

AAGGTCCGCAGCAGAGCTAGGATGAAAGTTGCTTGCATTACAGAGCAAGTTCTAACTGGAGTGATAAGAGATTATGTCTTTACCGCTT TTGATGAAGCTGTGAATAAGTACAAGCAGTCACGTGATATTTCTTACTTTCTGAATAGGGCAAAAAGTCTTCTGGAAGTTGAACATAA AGCCTTAACAAATGAAATAGCCTCATTGCAATCCAAGTTGAAGATGGAAGGTTCTGACCTATGTGACAAAGTCAGCGAAATACAGAAG AAAATTGGGGTAATGTGAGGGAAGAATGCAAGGCAATTGTATGGGTATACTGAGCCATAATTTAGAAAGTAAGAAGGAGCAGTAAAT $\label{eq:construct} a construct of the construction of the cons$ ATTATGACTTCCGAGTCTGTTGTAAAGTCCCCTAATCGCCAGTAGAGAAACATGCACAGGTCCTCTTCGGACACTGGATATCTCAG

Mitochondrial DNA

Cytochrome C subunit one

R 55 nucleotide sequence, not complete, using T3 primer (GenBank accession No. AY691675)

ACCCGCCCCTATCGGGAAACTTAGTTCACTCCGGGCCATCCGTCGACTTAGCTATTTTTTCACTCCACCTAGCAGGAGCCTCCTCCAT ${\tt CCTGGGAGCAATCAACTTTATCACAACATGCATCAACATAAAAACCCCAAATCAATACCAATATTTAATATACCCTTGTTCGTATGGTCC$ ${\tt CATCCTTCTTTGACCCCTGCGGAGGAGGAGGAGGAGGACCCGGTCCTATTTCAACACTTATTCTGATTCTTTGGTCACCCAGAGGTTTATATCCT}$ TTACAGCAGCAACAATAATCATCGCTGTTCCCACAGGAATTAAAGTCTTCGGCTGACTAGCCACACTAGCAGGAGGCCAAATTAAATG ACAAACCCCAATCTACTGGGCCCTTGGGTTTATCTTCTTATTTACAGTTGGTGGTATAACAGGTATTATCCTAGCAAACTCATCACTA GACATTGTCCTACATGATACTTATTACGTAGTAGCCCACA

Cytochrome C subunit 2 (GenBank accession No. AY691676)

<u>R 61 and RW37 nucleotide sequence, complete, using T3 primer</u> CCCAACTCTCTCTACAAGAAGCCACAGGCCCAGGCTATAGAAGAAGTTGTTTTCCTACACGACCACGTCCTTCTACTAACATGTCTCAT GCAGCATGAACAGCCGCTCCTATTATAATCCTTATCTTGACAGCCCTTCCATCCGTACGATCCCTCTACCTCATAGAAGAAGTATTTG ACCCTTATTTAACTATTAAAACTACCGGCCACCAATGATATTGAAACTATGAATACTCAGATGGGGCCCCAAGTTTCATTTGACTCTTA CATAATCCGAACCCCTGATCTACAAAACGGGTCTCCCCGCCTATTAGAAGTAGACAACCGCATAACAATACCAATGGGACTGCAAGTC

Cytochrome C subunit three (GenBank accession No. AY691677)

R124 nucleotide sequence, incomplete, using T3 primer

ATACCATCTTGTTTGACCCAAGCCCATGGCCTCTGACAGGGGCCATGGGTTCCTTACTCCTGACCTCAGGCCTAGCGGTATGGTTCCA CACTTCATCCACAACCCTTATAAAAACTAGGCCTTCTAACCCTCATGATAACCATAATCCAGTGATGACGAGACGTGATCCGAGAAAGT TAATCCAATAGAAGTCCCACTTCTAAACACAGCTGTACTCCTGGCCTCAGGGGCAACAATCACCTGATCCCCACCACACAATAATAAAA ${\tt GGAAATAAAAAAGAAGCAACTCACGCCCTAATAATTACCATCACACCTTGGAATCTATTTCACTGCCCTACAGCTGTCAGAATATAAAGAAACTCCCTTTACTATCTCAGAATAGTGTCTTCGGGTTCCTTGTTGTTGTAGCCACAGGATTCCACGGACTCCACGGCTCCATAATCGGAAC$ CACCTTCTTACTAGTCTGCATACTACGACTAGTTCAATCCCATTTCACA

Cytochrome C subunit four (GenBank accession No. AY691674)

R 144 nucleotide sequence, complete, using T3 primer

TCCGGTTGTAGAGGACACGGGCCGTCTCGGGATGTTGGCTGCTAGGGCATTCAGCCTTATTGGCAGGCGGGTTTTGTCCACTTCTGTT GAAGATTGCTCTGTACCACATCAAAATTTGACAAAACATTTGCTGAAATGCTGAAGCCATCGAAAGAATGGAAGACTGCGTTCGGTTTA CGAATGGAAAAAATAAATAACCTTTCAGGAAATCTCCCACGACTTCTCTCGGGATGTGAAAGTCTGAAACCATTTCTTCATCTCTAGGTT TGCAGCCTGGCTTCTGCCTCGGATGAAATAGAATCGTATCCTTGGTTTAAACCATAACAGCTTTATGTACTCGGAATTGCTGCAA

Dehydrogenase (GenBank accession No. AY702456)

R 40 or RW 7 nucleotide sequence, incomplete, using T3 primer

two subunits in one sequence

AACAATACTATACCTAGCCTTCATTATCACCTTAATAGGCCTGTCTATACAAAATAAACACCTTATACTAGCACTTATGTGCGTAGAA ACAATAATACTGCTCCTCTTCACAATACTAGTAATTTTCCTTTCTTCTTCCTCGCACTATCACAAACCCCCAATACCCCATTATCCTAC TCACTTTCTCAGGTTTGTGGGGCAGCAGTAGGATTAAGCCTCGTTGTTGCAATTACACGGAACCCGAGGAAATGACTTCCTAAATAGCCT CAACCTACTATAATGCTCAAACTTATTTACATAACTGTTATATTAATCCCAACGACACTGTTAAACCAAAAAGCCCTTATACAAA CGACAACGCACATTTCTAGCAACTATCGGCCTCCTGCAATTATTATTGCATTAACATTTTCAGCCTACACAATAACCCTAATAATG

No matches or ORF

Wel 12 nucleotide sequence, low match to centromere (38%).

GGAATTTTTTTTGAGGGGAGCGGGGGGAGAAGCCTGTACCCTGCACTCATTCCTAGGGAATTATATAGCTTGAAACCTTCCTCGGGGACG GAGCTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTGACCTGCTTTTGAATTGTGCTGACGTAAAGATGATTCTCTTTTTGAGGGGGGGTTGT CCTGCCTGAGCCAAACCTGGTTCCAAGAGAGCAACATAAGACAAAGGCAGCAGCATAACCTTTTAATGTTCATCTATGAATCCTGTTC **GCTTTTATCTTCTTGAAGGAGGGGCCATTACCTTGCAGCCTTATCCCGAGTTGCCCATGCTGTTGTAACTGCTCTTTCCTCTGAGCAA** GACTACAAGACCTCCAAGGTCCCTTCCAGCTCTGTTATTCTGCTCATTAGAGGCCTGCTGAAATCTACTATTGAACATTCAGCGCCAT ${\tt CTGAGTCAATATGTCTTCTTTCAACTGTTTTCCGGGAAGGGCCTGTTTACCAGGAGATGCACTGAAGGTTTGAAAGCTAATTATTTGT$

Wel 16 (T3) and R 6 (T7), no internal sequence, no match

Wel 16 nucleotide sequence, using T3 primer

TATTTATATCAACTTAATAATTGAGACTGCTTTGAACCTTTTAATGAAGTATTATAGATTAATCTAACACAGATTTTAAAGGCTGAAT GCGCATCACAGAATTTCAGACATACTTAAAATTCTGTAATTTTGACAAAGGTAAAGCTATAGAAACTGATGTGTGTAATTATACAATG TACAATCATACACATAATTATTTCTTGTATAATACTTTTGACATGTTCTGTTAAAGCTTTCTGACATGATCTTATTGATATTACATGT

<u>R6 T7 nucleotide sequence</u>

CGTTCCCACTCAGATCAAAAAAAATTTCCATCACCAAATGGGGGCAAGCATCGCATTGAGCTAATAACCAGTTTTACGTAATGACTGC $\label{eq:construct} a trate of the second second$ TATGATTAAAAACCCACCTTGTAAATGAAATGGAGCTTTTAAATTCAAAACTGTCTCCTAACTTAATGTAATGAGAGGGATGCCAGATT TTTAATGTTTTTTTTTTTCCTCTACAACTACCATAANGTTCGGGGGCCCGGNCA

Wel 10 24/3/03, no matches

Wel 10 Nucleotide sequence, using T3 primer CTTAGGAACAATACCAGTTAACTTTTTGCCACCACTTTAATAAATTCTTTTTAACTTTCGGCAGTTAAAAACCTGTACAGATACTGCTA TAAATATTTTTTTAATATAGATGTCCTTTCTCAAAATGCTGAGGAGGAGCAGACTGAGTGCCCAAAAAACTTAATTCCCCAAGAACACTGAGGATCA TTCTTTTATCAAATTTGAACCAATTTTAAAGAGTTATCTGGTTAAAAGGCAGAGTTTAAAAAAAGTTTCTCAAATTGACTTGTAGAC ${\tt TTGGATATAGGTATATGACTGGTGCAGTCTTTGGACATCAATGGGGTTTTAATAGCTTTGGTGGTGGTTGCATCTCTTTCGTGAT$ AATTTTAGCACTCCACTGTTCTATATATATATGTTTACTT

R 138/R 139, no conclusive matches

nucleotide sequence using T3 primer

TTTTTTAGTATTAAAATTAACTTTTATTTGGCCAATGAGTTCCATTCCTCTGAGCATCATGGATGCTTAAAATGAATTCATCCTCTTT GTAATACAGACTTTCCATGGCTCTCAAGTATCCCCACAAAACTCCTTAGTTATCAAGTGTCCTTTTTGTTAGATTCAGAGAAGTTATT AGGCAATAGGACATATTATCATTTCAATGTGCTTCTACCCAGGCCGCAATACTCTAAGGAAATGTACATCACAGGTTTGCAAATGAACA GAAGAGAACACAGACAGAAAAAGACCCAGCAGG

R148, no conclusive matches

R148 nucleotide sequence using T3 primer

TGTGCCGTATCACGATGTATCTAATATGCCTTTGTGAAGCCATGAGGTGGGCATGGCCTGCACATGACTGCATCCGGTCCACAGGCTA GNCACTTTGATACTCCTGGCCTAGACTGATTCGTGACGGGTGATTGCAAAGGCTGAACTGTCATGGCACAATACTCTTTTACCTTGCT TTAGGGTATNCCTTCGANAGAATTNTCATAACTG

Appendices

Appendix IX: Buffers and Solutions

Buffers and solutions

All buffers used (GTE, IPTG, SSC, LB, SDS, sodium acetate, TE, TBE, Phenol:Chloroform, Western and SDS buffer solutions) were prepared as described by Sambrook, *et al.*, 1989). All other variations are listed below.

Agarose Stop mix

Combined: 0.6 ml 0.5 M EDTA pH 8.0, 50 μ l 1 M TRIS pH 7.9, 1.5 ml glycerol and 0.5 mg bromophenol blue to a final volume of 5 ml with water.

SDS PAGE Solutions

SDS PAGE Gel

Recipes for SDS polyacrylamide gels used. Resolving SDS Page Gel

Denaturing Componer			onent Volumes (ml) for 2 Gels		
	7.50%		12%	15%	
30% Bis Acrylamide (37.5:1)	3	<u></u>	3.6	4.5	
1.5M TRIS-HCl pH 8.8	3		2.25	2.25	
ddH ₂ O	5.5		3	2.1	····-
10% SDS	0.090		0.0090 0.00		·····
TEMED	0.0036		0.0036	0.0036	,
10% APS	0.0036		0.0036	0.0036	
Native	8%		12%	15%	
30% Bis Acrylamide (37.5:1)	3.0		4.5	5.625	
1.5 M TRIS-HCl pH 8.8	2.8		2.8	2.8	10777
ddH ₂ O	5.25	<u> </u>	3.75	3.0	····
10% Nonidet	0.003		0.003	0.003	
TEMED*	0.0045		0.0045	0.0045	
10% APS*	0.0045		0.0045	0.0045	
Stacking Gel	I				
Denaturing Component Volumes (r	nl) for 2 Gels	Native	Component V	olumes (ml)	for 2 Gels
30% Bis Acrylamide	0.54	30% Bis Acrylamide 0.45		0.45	
0.5 M TRIS-HCl pH 6.8	0.9	0.9 0. M T		TRIS-HCl pH 6.8	
ddH ₂ O	2.1	2.1 ddH ₂ O		1.75	
10% SDS	0.0036	10% N	onidet		0.0075
TEMED*	0.0036	TEME	D*		0.003
10% APS*	0.003	10% A	PS*		0.0025
*Add these reagents immediately b	efore use.	·····			

Cracking Buffer (Stock)

Combined 350 µl TRIS 2M, 1.5 ml Loading Buffer (2X or 4X), 250 µl DTT (1mM), 250 µl 20% SDS

Silver Stain solutions

Silver stain recipe used within this project

		250 ml	1L Stock
Fixing solution:	Ethanol		400 ml
30 min	Acetic Acid		100 ml
	Stock: made up to 1.0 litre with ddH_20		
Incubation solution	Ethanol	75ml	300 ml
30 min-overnight	Sodium acetate.3H ₂ O	17.0 g	68.0 g
		(41g anhydr	rous)
	Glutaraldehyde (25% w/v)*		1.3 ml
	Sodium thiosulfate,		
	$Na_2S_2O3.5H2O$	2.0 g	
	Stock: Make up to 250 ml with ddH2O		
Wash: 3 x 5 min	Distilled water		
Silver solution:	Silver Nitrate	0.25 g	
40 min	Formaldehyde*	50 µl	
	Made up to 250 ml with ddH_2O	•	
Developing solution: (anhydrous)	Sodium carbonate		25.0 g
		((65 g 10H ₂ O)
15 min	Formaldehyde*	25 ul	
	Made up to 250 ml with distilled water d	$dH_{2}0$ to 1 lt	
Stop solution:	$EDTA-Na 2H_0O$		14.6 g
$2 \times 5-10 \min$	Stock: made up to 1 litre with distilled w	vater	x o B
Wash: 3 x 5 min	Distilled water		
Preserving solution:	Glycerol		100 ml
20 min	Stock: make up to 250 ml with	distilled water	

*Note: Add these components immediately before use

Primers

Primers used for sequencing clones in Chapter 5.'

Primers were produced when deletion and religation was not possible to continue sequencing of the clone. Primers were produced from nucleotide sequences near the end of the incomplete sequence. Sequences were chosen with consideration of the most beneficial melting temperature, length, lack of hairpin production and a lack of duplication within the sequence. These sequences were sent to Proligo Australia Pty Ltd Southern Cross University, Military Road, Lismore NSW 2480 Australia for the primer production.

Stock Primers

T7 5'-TAATACGACTCACTATAGGG-3'

- T3 5'-ATTAACCCTCACTAAAGGGA-3'
- SP6 5'-TATTAGGTGACACTATAGAAT-3'
- FUP 5'-ACTGGCCGTCGTTTTAC-3'
- RUP 5'-CAGGAAACAGCTATGAC-3'

PROLIGO primers

Clone reference	PROLIGO primer sequence	Primer
Number		reference
		No.
R5	5'- CCAGACATTGGAGAACTATGG -3'	R5
	5'- AGAAACACTTCACAAGGTGC -3'	R6
R14	5'- ATCGCCCAACAAACACAACCGC -3'	R7
	5'- TTCAGCACGCCATAAATGCCACCC -3'	R8

R18	5'- TTCTGGTCAAGCCTGTCTGATGGG -3'	R9
R20	5'- TCAGACAAATCCTGGTGG -3'	R10
100		D11
DOI		
K21	5- GATGACATICUTTICGGG-3'	K12
	5'- TCATTTCCTCATCCTCGC -3'	R13
R36	5'- CGAATACGCTTCAAGATACG -3'	R14
	5'- CAAGGAGAACGCCATTTG -3'	R15
R 38	5'- TGCTGGCTTTCAGTCTCAC -3'	R16
1.00	5'_ TTGGATGCTGGCGAGAATCTGG_2'	R17
D 40		D10
K 42		KIð D10
	5'- ATTTACCAGCCCCATCTG -3'	K19
R 46	5'- ATGGGAATGAGTCAGTGGGC -3'	R20
	5'- CAGAGGTGGTCCAAGTTTG -3'	R21
R 50	5'- ATAGACCTGATGAGGCACCAGC -3'	R22
R 60	5'- TTATTCCCTTGGTCAGCC - 3'	R23
	5' TTCATTCGCTGTGGAGTCC $-3'$	R24
D 45		D05
L 02	J-11UU11UAUUUA11UAUU-J CLOCOAATOTTOTTTOTAOCAACCA	N25
	5'- GCGAATGTTCTTTGTAGGAAGC -3'	K26
R50	5'- ATGAAAGAGCCAGCCAGGATGG -3'	R27
R8	5'- CCTGATGGATTCAACTCCC -3'	R28
R8	5'- CACTGAAAACAACTGTGGC -3'	R29
R8	5'- CATCTGCTCACA & A G & A G G A G -3'	R30
R5	S' OTTTGGTTGGTGGTGGTTGG 21	R 31
К.) П 27		1.31
K 2/	5'- AACAUAUCUUTUUAAAAUUU -5'	K 32
R5	5' AACCCITAGGTGAGCACAGC 3'	R 33
	5' AAGGGTAAGGGTGGATC 3'	R 34
R18	5'- AGACTGGGACTTGACTTGG -3'	R 35
R 21	5'- ATCTATGACCTGCCAACGC -3'	R 36
R 50	5'- AATGTGCCCTCTTCCCACGAGAAC -3'	R 37
		D 38
DIE		R 30
K 65	5'- GAUCITCUAUAACITGAAC -5'	K 39
K42	5'- ACTGGAAAGGGGGAAACC -3'	R 40
	5'- ACTTTCAGCAGTCCCATTC -3'	R 41
R 46	5'- GCTCAGGACAAACTTGATAAGC -3'	R 42
R5	5'- CAGGGGCTAAAGCAAAATC -3'	R 43
R 18	5'- TCAGAGGTGGTATTGGCTGG -3'	R 44
R 21	5'_ CCCAAGAGCATTTTCTGC _3'	R 45
D 42		D 16
K 42		R 40
	5'- TICAGGGTICACIGTIGGG -3'	K4/
R 50	5'- TTGAGACCGTTTCCACAGCC -3'	R 48
R 21	5' AGTCTTTCGCTGGGTCTTGG 3'	R 49
R 50	5' CGGAATCATCTTCACAGCC 3'	R 50
R5	5' CCGACATTTTCAATCCTCCAGAAG 3'	R 51
R 15	conserved region (minus) 5'- CAGTAGCAACCGTAGT 3'	R 52
Do	5'_TGTCTCACCACACTTGGC 2'	R 53
D 17		D 54
KI/		N 34
-	5'- IGICAICCICCACAGICIGC -3'	K 33
R 37	5'- TACATTGGTGGACACTGGG -3'	R 56
1	5'- GGAGGTAGGAAAGAGGGAAG -3'	R 57
R22	5 '- AAAGAAACGCACAGGACC -3'	R 58
1	5'- CACTTATTCCCTTGGTCAGC -3'	R 59
R 17	5'-ACCCATCAGAATAGCAGCC 3'	R 60
R 22	5'_ACTTGCTTGAGTTGGCAGC 3'	R 61
1 22	$5 - A \land C \land$	D 62
D 25		R 02
R37	5'-1GTCUAAAGUATCAGAGGU-3'	K 63
R 37	5'-ATCACCTCAAAACCACGC-3'	R 64

Appendices

AQIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY

Valid To: 17 May 2003

Quarantine Act 1908 Sect. 13

Phone: (02) 6272 4578 (02) 6273 2097 Fax: File Ref: 01/4475

Permit to Import Quarantine Material Permit: 200105617 Valid From: 17 May 2001

Page 1 of 6

James Cook University	All exporters
Department of Biochemistry and Molecular Biology	All addresses
Townsville QLD 4811	All countries
Attn: Dr Subhash Vasudevan	

You are authorised to import the following material under the listed conditions

Note: This permit covers AQIS quarantine requirements only.

All imports may be subject to quarantine inspection on arrival to determine compliance with the listed permit conditions and freedom from contamination. Imports not in compliance or not appropriately identified or packaged and labelled in accordance with the import conditions they represent may be subject to seizure, treatment, re-export or destruction at the importer's expense.

Additionally, all foods imported into Australia must comply with the provisions of the Imported Foods Control Act 1992, and are consequently liable for inspection and/or analysis against the requirements of the Australian Food Standards Code.

All imports containing or derived from Genetically Manipulated Material must comply with the Genetic Manipulation Advisory Committee Guidelines.

It is the importer's responsibility to be aware of and to ensure compliance with the requirements of all other regulatory organisations prior to and after importation. Examples of organisations that may impose requirements on imported products include: the Australian Customs Service, Environment Australia, State Departments of Agriculture, State Departments of Health, Therapeutic Goods Administration, Australia New Zealand Food Authority, National Registration Authority (for Agricultural and Veterinary Chemicals), Commonwealth and State Environmental Protection Authorities. PLEASE NOTE that this list is not exclusive.

Import conditions are subject to change at the discretion of the Director of Quarantine. This Permit may therefore be revoked without notice

teorine en anno es The Revers $\sim 10^{-1}$ All countries In-vitro Cell lines (Human and PC0820 insect) All countries PC0819 Antibodies (Human In-vitro antibodies raised against synthetic material or antigens from multicellular organisms) PC0819 All countries In-vitro Antibodies (Rabbit antibodies raised against synthetic material or antigens from multicellular organisms) PC0819 All countries In-vitro **Antibodies** (Rodent antibodies raised against synthetic material or antigens from multicellular organisms) Antibodies (Sheep PC0600 AND PC0819 All countries In-vitro

