JCU ePrints

This file is part of the following reference:

Welton, Ronelle Ellen (2005) Proteomic and genomic characterisation of venom proteins from Oxyuranus species. PhD thesis, James Cook University

Access to this file is available from:

http://eprints.jcu.edu.au/11938

Proteomic and genomic characterisation of venom proteins from *Oxyuranus* species.

Thesis submitted by Ronelle Ellen Welton BSc. (Hons) In June 2005

For the degree of Doctor of Philosophy In the School of Pharmacy and Molecular Sciences, Discipline of Biochemistry and Molecular Biology James Cook University Australia

Declaration

I declare this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. I declare this thesis is less than 100,000 words.

Ronelle Welton

June 2005

Statement of support

Funding for this activity was provided by an ARC linkage grant, Wilsha Holdings Pty. Ltd. and the Dept of Biochemistry and Molecular Biology, James Cook University and is gratefully acknowledged.

Confidentiality agreement and statement of access to thesis

A Deed of Confidentiality between the author, Ronelle Welton, James Cook University, and Wilsha Holdings Pty. Ltd covers selected contents of this thesis for 18 months after the submission date stated above (to be shown as blackened boxes for public view). Persons receiving access to the information contained within are therefore bound by the obligations of confidence in respect of the confidential information described in the agreement.

After the 18 months has elapsed, I the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting the thesis will have to sign the following statement:

In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written acknowledgment for any assistance, which I have obtained, from it.

Beyond this, I do not wish to place any restriction on access to my thesis.

Abstract

The genus *Oxyuranus* includes three of the largest and most feared Australasian snakes, and are listed within the top ten of the world's most venomous snakes. This genus includes *Oxyuranus microlepidotus*¹ (inland taipan), *Oxyuranus scutellatus scutellatus* (coastal taipan) and the subspecies *Oxyuranus scutellatus canni* (Papuan taipan). Despite comparative differences in the proportions of venom components the *Oxyuranus* species have been reported to be more closely related to each other than to those of any other large Australian elapid snakes. Nevertheless, differences in the clinical presentation of envenomed patients have been described between species. It has also been shown that the antivenom (produced from *O. s. scutellatus*) may not be as effective in bite victims of *O. microlepidotus* or *O. s. canni* compared to *O. s. scutellatus*.

This project was a comparative study designed to substantially build upon previous research into the venom of *Oxyuranus* species. The objectives of this study were: *firstly*, to conduct a comparative study of the composition of venom proteins from the three *Oxyuranus* species; *secondly* to clone and characterise venom specific proteins. This study was primarily conducted utilising fundamental proteomic tools including chromatography, one- and two-dimensional gel electrophoresis (2DE) mass spectrometry and N-terminal sequence determination. The *third* objective was to use a cDNA expression library, constructed using mRNA from a venom gland of *O. s. scutellatus*, to screen with taipan antivenom in order to isolate nucleotide sequences important within the venom.

The venoms from *Oxyuranus* showed remarkable complexity and stability. It was shown that the three *Oxyuranus* venoms share strong similarities in the protein patterning of major proteins. *O. s. scutellatus* and *O. s. canni* venoms exhibited identical protein patterning throughout electrophoretic, fractionation and immunobinding analysis. The venom similarities, together with previous comparative

¹ (Note for future annotation: *O. s. scutellatus* may be taken to mean the Australian species, the coastal taipan, *Oxyuranus* scutellatus scutellatus (OS in some figures), *O. microlepidotus* to mean the inland taipan or *Oxyuranus microlepidotus* (OM in some figures), and *O. s. canni* to mean the Papuan subspecies *Oxyuranus scutellatus canni* (OSC in some figures))

research using mitochondrial DNA sequencing and morphology studies indicated *O.* canni is not a subspecies but the same species of *O. s. scutellatus*. *O. microlepidotus* on the other hand, though sharing major proteins, revealed patterns distinctly different to *O. s. scutellatus* through electrophoretic and fractionation examinations. Immunobinding studies showed the major banding differences in *O. microlepidotus* were antigenic against taipan antivenom (CSL). These results also indicated that diet, feeding and habitat (captive/wild) do not play a major role in contributing to the venom compositions of the taipan, opposing literature stating the contrary in other species. Variation within the venom composition between the species may be due, instead, to the geographic distances and habitat pressures between the species.

From these comparisons, an antigenic 300 kDa glycoprotein from *O. s. scutellatus* was identified using 15% SDS-PAGE and was isolated using size exclusion and affinity chromatography. This protein was comprised of a homo trimer, three subunits of 100 kDa joined by disulphide bonds. N-terminal sequence shared homology to a previously identified serine protease. This protein cleaved chromogenic substrate S-2288 and Michaelis-Menten kinetics revealed this protein to undergo allosteric interactions. Results of inhibition profiles, pH optimum and kinetic studies confirmed this to be a trypsin-like serine protease. It was highly sensitive to benzamidine and PMSF and was inhibited only by high concentrations of alkylating and reducing agents NEM and iodoacetamide. Metal chelators 1,10-phenanthroline, EGTA and EDTA showed little inhibition; whereas SDS was the only reagent to completely prevent any activity. Based on this evidence it is proposed all three subunits are required for activity. This protease appeared to be present in the venoms of both *O. microlepidotus* and *O. s. canni* and may represent another coagulative enzyme within the venom.

Sequencing studies elucidated the nucleotide sequences of a variety of clones from an O. s. scutellatus cDNA library. These clones, translated into full-length protein sequences, included homologous matches to characterised proteins including polymerases, carboxylases, dehydrogenases, Protein disulphide isomerases (PDI's), Heat shock proteins (HSP's) and myosin. Based on the sequences obtained, six PLA₂ toxins, two post-synaptic toxins and the complete factor V component of a prothrombin activator (scutelarin) were proposed. This study represents the first report of full-length amino acid sequences of taipan venom proteins; previous studies have been conducted using isolated venom proteins that lack the nucleotide and transit peptide sequences. cDNA and deduced amino acid sequences were compared with those of other snake species. These comparisons conformed to the established primary structures found within the differing peptide classes and, within the putative pre-synaptic neurotoxins, conformed to the evolutionary outline suggested for these sequences.

Acknowledgments

First and foremost I would like to thank Professor Jim Burnell for giving me the opportunity to undertake this PhD project. Thanks also to my co-supervisor Subhash Vasuedaven for his comments in the first 18 months of this project before moving to Singapore.

This project would not have been possible without David Williams. David not only risked life and limb to obtain venom samples in the field, his knowledge and interesting discussions were invaluable within this project and for my sanity. Special thanks to Sir Phillip and Lady Brenda Willmott-Sharpe for opening their home as a 'half-way' house whilst in PNG, to Wolfgang Wüster for his patience with my questions both in and out of PNG, and to Billabong Sanctuary Townsville for their donation of venom from their *Oxyuranus* species.

Thanks must be mentioned to Lynn Woodward, Jane Oakey and Mirko Karan. Also to Andrew Chapman, Sonia, Moira, Sheryl, Lucjia, Dave "the American", Nikki, Danielle, Di, Deanna, Shilo, Bill, Anthony, Tony and Tamara whose help and friendship have meant very much to me. A very special thank you to Professor Yellowlees, whose friendly, approachable and understanding manner helped me retain a flagging morale.

On a personal note, the emotional support of family; Mum, Dad, Jill, Nona, Arlen, Frances, Bob and Kerrin was deeply appreciated. A very special mention is for my husband James, his patience knows no bounds; and to my cat Marty, whose contribution to this thesis by constantly walking across the keyboard was not always appreciated.

Table of Contents

List of Figures	X
List of Tables	XII
Abbreviations	XIII

Chapter 1 Introduction and literature review

1.1	Introduction	1
1.2	Literature review	7
1.2.1	Biology, ecology and distribution of Oxyuranus	7
1.2.2	Clinical presentation after envenomation by Oxyuranus	11
1.2.3	Present state of knowledge of Oxyuranus venoms-summary	15
1.2.4	Evolution of Australian snakes and their venoms	17
1.2.5	Variance of Venoms	20
1.2.5.1	Examples and biochemistry of venom toxins	25
1.2.5.1.1	Phospholipases	26
	Neurotoxins	28
	Pre-synaptic neurotoxins	29
1.2.5.1.2	Post-synaptic neurotoxins	34
1.2.6	Proteomic and genomic characterisation of Oxyuranus venom	36
1.3	Objectives	38

Chapter 2 Materials and methods

2.1	Materials	39
2.1.2	Venom	39
2.1.3	Reagents	40
2.2	Methods	40
2.2.1	Protein protocols	40
2.2.1.1	SDS-PAGE	40
2.2.1.2	Venom stability studies	42
2.2.1.3	Liquid chromatography	43
2.2.1.4	Quantification of proteins	45
2.2.1.5	Enzyme activity assays	45
2.2.1.6	Inhibition studies	47
2.2.1.7	Two dimensional gel electrophoresis	47
2.2.1.8	ELISA	48
2.2.1.9	Western blotting	49
2.2.1.10	Immunoscreening	49
2.2.1.11	Glycoprotein detection	50
2.2.1.12	Antibody binding	50
2.2.1.13	Precipitation of proteins	50
2.2.1.14	Determination of amino acid sequence of proteins	51
2.2.2	Molecular biology	52
2.2.2.1	cDNA library; construction and screening	52
2.2.2.2	Agarose gel electrophoresis	54
2.2.2.3	Plasmid DNA	54

2.2.2.4	Restriction enzyme digestions	56
2.2.2.5	Isolation of DNA from agarose gels	56
2.2.2.6	Estimation of DNA	57
2.2.2.7	Ligation of DNA into pGEM-T	57
2.2.2.8	Preparation of competent cells	58
2.2.2.9	Transformation of competent cells	58
2.2.2.10	Precipitation of DNA	58
2.2.2.11	Polymerase chain reaction (PCR)	59
2.2.2.12	Sequencing	62
2.2.2.13	Analysis of sequence data	62

Chapter 3 Comparison of Oxyuranus species venom

3.1	Introduction: Storage of venom	64
3.2	Results	65
3.2.1	Stability studies of whole venom: effect of time, temperature and	
	pH upon the stability of whole venom	66
3.2.2	Electrophoretic analysis	67
3.2.3	Separation and identification of venom components	68
3.2.3.1	Size exclusion chromatography (SEC)	68
3.2.3.2	Ion exchange chromatography	74
3.2.4	Two dimensional gel electrophoresis (2DE)	76
3.2.4.1	Fractionation of whole venom proteins for 2DE	76
3.2.5	Antivenom binding studies	78
3.2.6	Glycosylation of venom proteins	79
3.3	Discussion	81
3.3.1	Details of Oxyuranus snakes venom used within the study	81
3.3.2	Stability study of whole venom	81
3.3.3	Electrophoretic analysis	83
3.3.4	Separation of venom components	86
3.3.4.1	Size exclusion chromatography	86
3.3.4.2	Ion exchange chromatography	88
3.3.5	Two dimensional gel electrophoresis	90
3.3.6	Antivenom binding studies	92

Chapter 4 Isolation and characterisation of a serine protease from O. s. scutellatus

4.1	Introduction	95
4.1.1	Coagulant enzymes	95
4.2	Results	98
4.2.1	N-terminal sequence	98
4.2.2	Serine protease activity	98
4.2.3	Stability of fractionated venom	99
4.2.4	Two dimensional gel electrophoresis	100
4.2.5	Isolation and characterisation of a 300 kDa protein	100
4.2.6	Determination of amino acid sequence.	107
4.2.7	PCR	107
4.2.8	Isolation of B2 using specific antibodies	109
4.3	Discussion	110
4.3.1	N-terminal sequence and 2DE	110
4.3.2	Serine protease activity	111
4.3.3	Stability	112
4.3.4	Isolation of the serine protease (B2) from O. s. scutellatus	113
4.3.5	Characterisation of B2	114
4.3.5.1	Sequencing	116
4.3.5.2	PCR	117
4.3.6	Antivenom binding studies to isolate B2	118

Chapter 5 Nucleotide sequences of venom toxins

5.1	Introduction	119
5.2	Results	119
5.2.1	Nucleotide sequences isolated from O. s. scutellatus	126
5.2.2	Potential peptides isolated from O. s. scutellatus	127
5.2.2.1	Oxyuranus sequences sharing homology with PLA ₂ s	127
5.2.2.2	Oxyuranus sequences sharing homology to post-synaptic peptides	136
5.2.2.3	Oxyuranus sequence sharing homology to Factor V	139
5.3	Discussion	142
5.3.1	Pre-synaptic neurotoxins	143
5.3.1.1	Type IA peptides	144
5.3.1.2	Neutral peptide	145
5.3.1.3	Type IB peptides	145
5.3.2	Preliminary alignment of pre-synaptic neurotoxins	148
5.3.3	Post-synaptic neurotoxins	150
5.3.4	Factor V.	152
5.4	Annex for Chapter 5: Details of sequences discussed	154
5.4.1	Details of sequences isolated from O. s. scutellatus cDNA library	
	matching venom PLA ₂ neurotoxins	154
5.4.2	Details of sequences isolated from <i>O. s. scutellatus</i> cDNA library	
	matching post-synaptic neurotoxins	162
5.4.3	Sequence sharing homology to Factor V	164
Chapter 6 Co	Denclusions Objective 1 Objective 2 Objective 3	169 169 172 173
References		175
Appendices		201
**	Appendix I Families of snakes the species found within them	201
	Appendix II Common and scientific names of some Australian snakes	202
	Appendix III Summary of venom toxins found within Australian snakes.	203
	Appendix IV Mass spectrometry data	207
	Appendix V Anion exchange chromatography profiles	214
	Appendix VI Cation exchange chromatography profiles	215
	Appendix VII. Phylogram of a neighbour joining distance tree for	
	Oxyuranus putative and peptide sequences.	216
	Appendix VIII Summary of clones from cDNA library	217
	Appendix IX Buffers, solutions and primers used for sequencing	235
	Australian and PNG export and AQIS import permits	238

List of Figures

Figure	1.1	Classification of Genus Oxyuranus.	8
Figure	1.2	Coastal taipan (O. s. scutellatus)	9
Figure	1.3	Papuan taipan (O. s. canni).	9
Figure	1.4	Inland taipan (O. microlepidotus)	9
Figure	1.5	Brown snake (<i>Pseudonaja</i>)	9
Figure	1.6	Geographical locations of Oxyuranus species	10
Figure	1.7	Phylogeny of the Family of Elapidae	19
Figure	1.8	Phylogeny of Hydrophiines (sea snake)	19
Figure	1.9	Highly schematic drawing of a nerve fibre and motor end plate	29
Figure	2.1	Venom milking	39
Figure	3.1	The effect of pH on the degradation of whole venom (50 μ g)	69
Figure	3.2	Effect of pH on the degradation of whole venom (1 μ g)	70
Figure	3.3	Successive venom samples obtained over time.	70
Figure	3.4	The effect of protein amounts (μg) on whole venom electrophoretic patterns.	
		(15% SDS-PAGE)	71
Figure	3.5	The effect of protein amounts (μg) on whole venom electrophoretic patterns	
		(7.5% SDS-PAGE)	71
Figure	3.6	Effect of reducing and non-reducing conditions on whole venom electrophoretic	
		patterns (15% SDS-PAGE)	71
Figure	3.7	Effect of reducing and non-reducing conditions on whole venom electrophoretic	
		patterns (15% SDS-PAGE)	71
Figure	3.8	Gel filtration trace of OS venom.	72
Figure	3.9	Comparison of gel filtration profiles of whole venom from OS and OSC	73
Figure	3.10	Comparison of gel filtration profiles of whole venom from OS and OM.	73
Figure	3.11	Cation exchange chromatography profile of OS whole venom	74
Figure	3.12	Fractions from cation exchange chromatography separated using SDS-PAGE	75
Figure	3.13	Two dimensional gel electrophoresis of OS and OM whole venom	77
Figure	3.14	Two dimensional gel electrophoresis of duplicate samples from OS whole	
		venom.	77
Figure	3.15	The effect of fractionation of OS and OM whole venom at pH 6.0	78
Figure	3.16	Western blot analysis of Oxyuranus venom proteins	79
Figure	3.17	Immunobinding study of SEC fractions from OS, OSC and OM whole	
		venom	80
Figure	9.1	Sites of activity of snake venoms on coagulation (from Tibballs, 1998)	97
Figure	e 4.2	Protease activity profile from OS and OM whole venom using Chromogenix	
		substrates.	99

Figure 4.3	Specific activity of OS whole venom fractionated by size exclusion	
	chromatography	99
Figure 4.4	Effect of pH 6.0 and 9.0 on OS peak one	101
Figure 4.5	Resolution of proteins in peak 1 by two dimensional gel electrophoresis	101
Figure 4.6	Affinity chromatography profile of whole venom.	103
Figure 4.7	Whole venom bound and eluted from a benzamidine column	103
Figure 4.8	Peak 1 bound and eluted from a benzamidine column	103
Figure 4.9	The effect of differing buffers on the activity of isolated B2	104
Figure 4.10	Effect of pH upon enzyme activity.	104
Figure 4.11	Effect of temperature upon enzyme activity.	104
Figure 4.12	Kinetics curve of B2 and comparative catalytic rates.	106
Figure 4.13	PCR products from nested PCR	108
Figure 4.14	Primers specific for B2	109
Figure 5.1	Pairwise alignment of putative O. s. scutellatus peptides	129
Figure 5.2	Sequence alignment of chosen group IA peptides	131
Figure 5.3	Sequence alignment of chosen group IB peptides.	132
Figure 5.4	Alignment of the signal peptides from O. scutellatus with other Elapid species	133
Figure 5.5	Distance alignment of O. s. scutellatus putative and peptide sequences	134
Figure 5.6	Distance alignment of O. s. scutellatus pre-synaptic Elapidae sequences	135
Figure 5.7	Alignment of R147 and R121 with post-synaptic neurotoxins	137
Figure 5.8	Alignment of RW6 with post-synaptic neurotoxins	138
Figure 5.9	ClustalW alignment of OS FV and pseutarin	141
Figure 5.10	Nucleotide and deduced amino acid sequence of β -taipoxin (R24)	156
Figure 5.11	Nucleotide and deduced amino acid sequence of α -taipoxin isomer (RW26)	157
Figure 5.12	Alignment of a-taipoxin isomer (RW26) with a-taipoxin subunit	157
Figure 5.13	Nucleotide and deduced amino acid sequence of γ -taipoxin isomer (R120)	158
Figure 5.14	Alignment of clone γ -gamma taipoxin isomer (R120) with γ -taipoxin	158
Figure 5.15	Nucleotide and deduced amino acid sequence of OS1 isomer (R132)	159
Figure 5.16	Alignment of R132 with O. s. scutellatus OS1.	159
Figure 5.17	Nucleotide and deduced amino acid sequence of OS2 isomer (R56)	160
Figure 5.18	Nucleotide and deduced amino acid sequence of OS2 isomer (R125)	160
Figure 5.19	Alignment of clones R125 and R56 with OS2.	161
Figure 5.20	Nucleotide and deduced amino acid sequence of R147 in two reading frames	162
Figure 5.21	Nucleotide and deduced amino acid sequence of R121.	162
Figure 5.22	Alignment of R147 and R121.	163
Figure 5.23	Nucleotide and deduced amino acid sequence of RW6.	164
Figure 5.24	Nucleotide and deduced amino acid sequence of Factor V sequence	164

List of Tables

Table	1.1	Clinical signs and symptoms of OS, OM and OSC	14
Table	3.1	Statistics of Oxyuranus species contributing to this study	66
Table	3.2	Summary of the time of elution compared to gel filtration marker (BioRad)	72
Table	3.3	Fraction number from Figure 3.8 and the % of Buffer B (1M NaCl) the fraction	
		eluted within.	75
Table	4.1	N-terminal sequence of four protein bands from OS	98
Table	4.2	Purification Table for B2.	105
Table	4.3	Specific activity of OS fractions from ion exchange chromatography	105
Table	4.4	Effect of various compounds on the activity of purified B2	106
Table	4.5	Peptides sequenced by mass spectrometry (Sample RW300S).	107
Table 5	5.1	Summary of mRNA sequences from O. s. scutellatus venom gland cDNA	
		library and the sequences they share homology with	121
Table 5	5.2	Summary of clones isolated from the O. s. scutellatus venom gland cDNA	
		library sharing homology with characterised toxins	126
Table	5.3	Annotation of suggested toxin residues in pre-synaptic neurotoxins	133

Abbreviations

Ach	acetylcholine
bp	base pairs
BSA	bovine serum albumin
Da	daltons
DAB	diaminobenzidine
DNA	deoxyribonucleic acid
ECL	enhanced chemiluminescence
EDTA	ethylene diamine tetraacetic acid
ELISA	enzyme linked immunosorbant assav
FV	Factor V (coagulation co-factor)
g	gram
HCl	hydrochloric acid
His	histidine
hr	hour
HRP	horse radish peroxidase
hrs	hours
IPTG	isopropyl B-D-thiogalactopyranoside
$k D_{2}$	kilodaltons
IR	Luria Bertani
	lethal dose 50%
LD50	molarity
	monanty
μg	microgram
	millionne
mA	milliamps
mi/min	millitters per minute
min	minute/s
ng	nanograms
nm	nanometers
Ntx	neurotoxin
OD	optical density (at a given wavelength)
OM	Oxyuranus microlepidotus, O. microlepidotus
ORF	open reading frame
OS	Oxyuranus scutellatus scutellatus, O. s. scutellatus
OSC	Oxyuranus scutellatus canni, O. s. canni
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PBST	phosphate buffered saline containing 0.05% Tween 20
PCR	polymerase chain reaction
PLA ₂	phospholipase A2
RNA	ribonucleic acid
sec	second/s
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
TRIS	tris(hydroxymethyl)aminomethane
V	volts
Xgal	5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside