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ABSTRACT 

 

This PhD thesis presents a theoretical and experimental investigation using active control 

to attenuate the vibration responses associated with coupled plate structures. Three plate 

structures were examined, which corresponded to an L, T and X shaped plate. The plate 

theory used to determine the dynamic and controlled responses of the coupled plate 

structures is presented for a generic structure consisting of four finite plates joined together 

at right angles in a X-shape. The theory for active vibration control of the coupled plate 

using single and multiple control actuators and error sensors is also presented for both 

dependent and independent control. 

 

The use of multiple actuators and error sensors in various arrangements to attenuate the 

response of various coupled plate structures is demonstrated. The number and location of 

the control forces and error sensors are varied, and their effects on the control performance 

are compared. In addition, the effect of the control forces driven dependently and 

independently was investigated. For active control at discrete resonance frequencies, the 

global response of the structure was observed. Experiments were conducted in order to 

validate theoretical results on the active control of the global response at a low resonance 

frequency. The results showed excellent correlation, validating the effectiveness of the 

active control application. 

 

An energy method to predict the vibrational response and its transmission between coupled 

structures in the medium to high frequency ranges is Statistical Energy Analysis (SEA). In 
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this thesis, SEA is used to model several built-up structures and estimate their vibrational 

response using energy flow relationships. Energy levels of the L, T, X-shaped plates, and a 

7-plate structure, predicted from the exact analytical waveguide model are compared with 

those of conventional SEA models. A hybrid approach between the two techniques is also 

presented. The hybrid method uses the analytical waveguide method to estimate the input 

power and coupling loss factors used in the conventional SEA equations. The energy levels 

in individual plate subsystems using the exact analytical method, SEA, and the hybrid 

technique are compared. 
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optsF  Optimal control force amplitude [N] 

pG , sG  Primary and secondary transfer functions [m/N] 

h  Plate thickness [m] 

kx, ky, kn, kp,  Wave numbers [1/m] 

L  Length of the junction line [m] 
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La Acceleration level, reference level aref = 10−6  m s2  [dB] 

xiL  Length of the plate along the x-axis [m] 

Ly Length of the plate along the y-axis [m] 

m, m′  Mode number  

M  Mass of each individual plate [kg] 

xM  Bending moment  [Nm] 

xyM  Twisting moment [Nm] 

xN  Longitudinal force [N] 

inP  Input power [J] 

disP  Dissipated energy  [J] 

ijP  Energy flow from subsystem i  to subsystem j  [J] 

xQ  Net vertical shear force [N] 

xF  Bending shear force [N] 

iS  Surface area of the subsystem i  [m2] 

u  Longitudinal displacement of the plate [m] 

pw  Displacement due to primary force [m] 

sw  Displacement due to secondary force [m] 

totw  Total displacement due to primary and secondary forces [m] 

xe x co-ordinate for the error sensor [m] 

xp x co-ordinate for the primary force [m] 

xs x co-ordinate for the secondary force [m] 

ye y co-ordinate for the error sensor [m] 

yp y co-ordinate for the primary force [m] 

ys y co-ordinate for the secondary force [m] 

Z  Impedance of an infinite plate [kg/s] 
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