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Abstract
Background: Epigenetic modification of DNA via methylation is one of the key inventions in
eukaryotic evolution. It provides a source for the switching of gene activities, the maintenance of
stable phenotypes and the integration of environmental and genomic signals. Although this process
is widespread among eukaryotes, both the patterns of methylation and their relevant biological
roles not only vary noticeably in different lineages, but often are poorly understood. In addition,
the evolutionary origins of DNA methylation in multicellular organisms remain enigmatic. Here we
used a new 'epigenetic' model, the social honey bee Apis mellifera, to gain insights into the
significance of methylated genes.

Results: We combined microarray profiling of several tissues with genome-scale bioinformatics
and bisulfite sequencing of selected genes to study the honey bee methylome. We find that around
35% of the annotated honey bee genes are expected to be methylated at the CpG dinucleotides by
a highly conserved DNA methylation system. We show that one unifying feature of the methylated
genes in this species is their broad pattern of expression and the associated 'housekeeping' roles.
In contrast, genes involved in more stringently regulated spatial or temporal functions are predicted
to be un-methylated.

Conclusion: Our data suggest that honey bees use CpG methylation of intragenic regions as an
epigenetic mechanism to control the levels of activity of the genes that are broadly expressed and
might be needed for conserved core biological processes in virtually every type of cell. We discuss
the implications of our findings for genome-scale regulatory network structures and the evolution
of the role(s) of DNA methylation in eukaryotes. Our findings are particularly important in the
context of the emerging evidence that environmental factors can influence the epigenetic settings
of some genes and lead to serious metabolic and behavioural disorders.

Background
In eukaryotes, gene activity is regulated by several interact-
ing systems operating at a number of levels, including epi-

genetic modifications of DNA [1,2]. One such mechanism
is DNA methylation that has the capacity to establish and
maintain diverse patterns of gene expression from the
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same genome under specific temporal, spatial and envi-
ronmental conditions [3]. This ability to selectively mod-
ulate gene activity is a key evolutionary invention that is
critical to generating the variety of cell types and pheno-
typic polymorphism in eukaryotic species. DNA methyla-
tion is widespread among eukaryotic species, but both the
level and overall pattern of methylation vary noticeably in
different lineages [3,4]. It is believed that this post-replica-
tion modification of genomic DNA provides a link
between genomes and environment and may result in a
phenotypic change that is heritable, but does not involve
DNA mutation [5,6]. In mammals, DNA methylation has
been implicated in tissue-specific gene regulation, paren-
tal imprinting and silencing of transposable elements
[3,5,7]. A recent integrated study of human genome-wide
tissue-specific DNA methylation profiles confirmed the
negative correlation between gene expression and methyl-
ation at CpG-containing promoters [8]. In contrast, gene-
body methylation has been found to be positively corre-
lated with gene expression. A strong relationship between
intragenic methylation and transcription has also been
uncovered in Arabidopsis [9].

Until recently, genomic methylation in invertebrates has
received less attention [10-12] and its biological role was
considered somewhat controversial [12-14]. One imped-
ing factor in these earlier studies was the lack of techno-
logical sophistication that would allow evaluating the
methylomes in species with very low and variable methyl-
ation levels. In recent years, the rapid progress in genomic
sequencing revealed that 'vertebrate-like' enzymatic
machinery required for CpG methylation is encoded by
many invertebrate genomes, including several insect
genomes [15-18]. More importantly, recent experimental
data in honey bees show that this system is fully func-
tional [16] and is utilized to generate nutritionally-con-
trolled phenotypic polymorphism that lies at the core of
social organization of this species [19]. In addition, broad
expression patterns of DNA methyl-transferases (Dnmts)
in honey bees that include embryos and the adult nervous
system [19], suggest that epigenetic controls of genome
activities also play important roles in early development
and in brain plasticity. Recent studies on DNA methyla-
tion in another invertebrate, Ciona intestinalis, provided
compelling evidence for the existence of distinct methyl-
ated domains across the genome that co-localize with
around 60% of transcription units encoding evolutionar-
ily conserved, infrequently transcribed genes [20]. These
authors proposed that CpG methylation functions as a
mechanism suppressing spurious transcriptional initia-
tion of rarely transcribed genes. These findings raise a
number of important questions. Do all invertebrates share
a similar pattern of genome methylation? Does the inver-
tebrate mode of genome methylation represent a primor-
dial function of DNA methylation in animals? Are the

methylated genes in honey bees important for social
behaviour and if so, are they a special subset of the
genome? Are there any commonalities in their predicted
biological functions and/or structural characteristics?

As part of our effort to understand the biological signifi-
cance of genome methylation in honey bees we combined
bioinformatic analyses, microarray-based transcriptional
profiling and bisulfite sequencing to determine if methyl-
ated genes in honey bees can be identified and organised
in functional categories that would shed more light on
their biological importance, in particular in the context of
the evolution of eusociality, and the role(s) of DNA meth-
ylation in animals. We find that broadly expressed genes,
typically classified as 'maintenance genes', fall into the
methylated category, whereas distinctly regulated genes
are not predicted to be methylated. Our data demonstrate
that in Apis, gene activities required for core biological
processes are controlled, at least partly, by epigenetic
means. We discuss the implications of our findings for the
origins of DNA methylation patterns in animals and their
contribution to complex regulatory networks.

Results
Predicting the methylation status of transcription units in 
Apis mellifera
Methylated cytosines are frequently deaminated to uracil
that is subsequently converted to thymidine after DNA
repair. As a result of this process methylated CpGs are
expected to decrease in abundance over evolutionary
time, and the ratio of observed to expected CpGs can be
used to predict methylated and unmethylated genomic
regions [20,21]. Figure 1 shows the frequency of all anno-
tated protein coding genes in Apis with CpG [o/e] frequen-
cies between 0 and 2. For comparison, the contrasting
distribution of all protein coding genes in a nematode
lacking the DNA methylation system is shown in panel B.
The bimodal distribution in Apis is indicative of two dis-
tinct groups: one representing CpG deficient genes with
mean CpG [o/e] of around 0.55, and the second contain-
ing genes with the CpG [o/e] frequency mean ratio of
1.15. We estimate that around 35-40% of the 10,742
annotated Apis genes belong to the CpG deficient group
and are expected to be methylated at CpGs located within
their coding regions. To confirm these predictions we
selected 14 genes for detailed analyses by bisulfite
sequencing. As shown in table 1, in all cases the genes
with CpG [o/e] ratios <0.8 have been confirmed to be
methylated. In contrast, no CpG methylation has been
detected in the selected exons of genes with CpG [o/e] >
1.0 suggesting that these genes are either not methylated
or their methylation is restricted to a precisely defined
developmental stage or a specialised group of cells. Inter-
estingly, two out of six analysed genes with CpG [o/e] >
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1.0 have classic CpG islands in the upstream region from
the ATG start codon (table 1).

Genome-wide profiling of gene expression in Apis using 
oligo microarrays
To ask whether the methylation status of a gene could be
correlated with its expression pattern, we used the honey
bee genomic array to visualise the transcriptional activities
in six functionally diverse tissues: brains, antennae, ova-
ries, thoraces, mixed larvae and hypo- pharyngeal (HP
glands). Blank arrays were included for validation pur-
poses. The design of long oligos for this new microarry
platform is largely based on computer-generated gene
models that yield around 70% accuracy [22,23]. In order
to evaluate the biological power of this tool we included
a pool of RNAs representing virtually all tissues and devel-
opmental stages (RNA cocktail) to determine the extent to
which the oligos selected for the array correspond to tran-
scribed sequences that can be visualized with this technol-
ogy. Additional file 1 shows the distribution of the
proportion of the 'detectable' spots for each array and
each channel under different experimental conditions. In
this section we call 'present', the spots having an intensity
value greater than the 95th percentile of the null distribu-
tion derived from the negative controls. On the blank
arrays, this proportion varied between 1.6% and 11.2%
indicating that this method has a low rate of false discov-
ery. The observed variability in the proportion of the
present spots (additional file 1), even between the two
channels of a single array is often associated with two-col-
our microarray platforms [24]. In accord with other stud-
ies (see for example ref [25]) we found that appropriate
RNA pooling significantly improves the reproducibility

between the experiments. The most consistent data were
obtained from the antennal RNA sample that represents a
pool of RNAs extracted from 100 antennae or 50 individ-
uals (additional file 1).

Tissue-specific and ubiquitous profiles of expression
In this section, we call a gene 'expressed' if its cDNA
probes have a median expression probability greater than
95% (see methods). The percentage of genes expressed
under various experimental conditions are summarised in
table 2. As in the previous section, the low number of oli-
gos hybridizing on the blank arrays (0.84%) confirms that
our method results in a low rate of false positives. Three
out of four positive controls were found in all experi-
ments, but one was not detected in each of the three
experiments: HP gland, larvae and thorax. This result sug-
gests that our approach tends to slightly underestimate
the number of expressed genes, but with only four posi-
tive controls, it is difficult to conclude with certainty to
what extent false negatives are produced. As expected,
complex tissues (brains, antennae and ovaries), show the
highest level of transcriptional activity by expressing 60-
70% genes, whereas a highly specialised organ (HP gland)
expresses only 14% of genes. Thoraces and larvae show an
intermediate level of gene activity (40%). Almost 70% of
oligos hybridized to the RNA cocktail. To assess the differ-
ence in CpG [o/e] frequencies between ubiquitous and
condition-specific transcripts, we first compared these two
categories and observed that the proportion of transcripts
with CpG [o/e] frequencies smaller than 1.0 was signifi-
cantly larger in the category of ubiquitously expressed
genes (p = 7.9e-111, Fisher exact test). We then contrasted
the ubiquitous and condition-specific transcripts with the

Histogram showing the frequency of all annotated Apis genes with CpG [o/e] frequencies between 0 and 2Figure 1
Histogram showing the frequency of all annotated Apis genes with CpG [o/e] frequencies between 0 and 2. For 
comparison, a similar analysis was performed on the nematode (C. elegans) genome that is not methylated due to the lack of 
the genes encoding DNA methyl-transferases. The honey bee CpG-deficient genes (CpG [o/e] <0.7) expected to be methyl-
ated are labelled in black. We used the honey bee official set of 10,742 genes available at BeeBase http://www.beebsae.org. The 
y-axis depicts the number of genes with the specific CpG [o/e] values given on the x-axis.
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Table 1: Selected genes with contrasting CpG [o/e] ratios analysed by bisulfite sequencing

Genes ubiquitously expressed predicted to be methylated

Gene ID or
Common name

OGS2 ID or
GenBank ID

Predicted function and 
expression patterns*

CpG [o/e] CpG island Exon(s) analyzed Predicted 
Methylation status

DCTN4 dynactin p62 XP_001121083 A subunit of the Dynactin 
complex

0.62 4-6 Confirmed

MTM myotubularin 
myopathy related 
protein 9

GB19180 Multiple cellular functions, 
in humans, brain protein 
linked to neuropathies

0.57 5
7

Confirmed

Histone 
methyltransferase

GB13959 Histone modifications 0.58 4 Confirmed

Nadrin GB16176 A novel GTPase-activating 
protein

0.47 10 Confirmed

PKCbp1 Receptor of 
activated prot.kinase C

GB12499 The ligand, PKC, is 
involved in learning, such 
as spatial learning in rats

0.65 5-6 Confirmed

TBP TATA-box binding 
protein

GB19036 A general transcription 
factor for RNA 
polymerase I, II and III.

0.35 1-2 Confirmed

Casein kinase II beta GB12504 Involved in circadian 
rhythm, brain development

0.42 3 Confirmed

Swiss cheese\NTE
neuropathy target 
esterase

GB10208 Involved in apoptosis and 
brain development

0.68 9 Confirmed

Genes with restricted patterns of expression predicted to be unmethylated

GLOX
glucose oxidase

GB19418 FAD flavoprotein 
oxidoreductase
Restricted pattern of 
expression 
(very high in HP gland)

1.14 YES Promoter
7-8

Confirmed

VHDL lipid transporter GB15055 Larval-specific, very high 
density lipoprotein

1.39 13-15 Confirmed

OBP13 odorant binding 
protein

GB18363 Expressed during late 
larval stages and in pupae 
[49]

1.17 2-5 Confirmed

Not available RIKEN EST
DB777978

Unknown function, highly 
expressed in worker head

1.96 Confirmed

ImpL3-like
L-lactate 
dehydrogenase

GB13882 Larval gene upregulated in 
worker larvae

1.33 YES 3-4 Confirmed

Squid RNP-CS RNA-
binding domain protein

GB15796 Required for the correct 
localization and 
translational regulation of 
the gurken message

1.22 5-7 Confirmed

*Expression patterns are based on published data and our microarray analyses. Ubiquitous: expressed under all examined conditions. Restricted: 
typically expressed in one or two tissues. CpG islands were predicted using cpgplot at http://mobyle.pasteur.fr
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entire collection of transcripts. The genes with CpG [o/e]
frequencies smaller than 1.0 were found to be over-repre-
sented in the ubiquitous category (p = 3.7e-77, hypergeo-
metric test), whereas the genes with a CpG bias larger than
1.0 were over-represented in the condition specific cate-
gory (p = 3.0e-51).

From these combined data we conclude that 11,684
probes (86.94%) are expressed in at least one experimen-
tal condition. The remaining non-hybridizing oligos have
been either assigned to non-transcribed genomic
sequences, or their hybridization intensities fell below the
acceptable confidence level.

Condition-specific and ubiquitous genes
Figures 2 shows the number of expressed genes identified
in various tissues and the number of shared transcripts
between our experimental conditions. The overlap gener-
ated by this analysis represents our ubiquitous set of
genes. To further illustrate the relationship between meth-
ylated and unmethylated genes we generated CpG fre-
quency plots for each of the three classes: i) condition
specific genes, ii) the ubiquitous set of genes, and iii) all
Apis predicted transcripts. The results are shown in figure
3. A characteristic bimodal shape of the CpG bias distribu-
tion for all predicted transcripts as already shown in figure
1 is also illustrated against the other profiles. The first
peak corresponds to genes depleted in CpG dinucleotides,
whereas the second peak comprises genes with a mean
CpG bias value slightly larger than one. The distribution
of ubiquitous genes largely overlaps with the first peak of
all predicted transcripts and comprises mostly genes with
low CpG dinucleotide content. In contrast, the distribu-
tion of condition specific genes closely matches the sec-
ond peak representing high CpG ratios. The same trends
were observed when different presence/absence thresh-
olds, at which genes are considered expressed, were used
(Additional file 2). The number of ubiquitous genes
(~3900) revealed by microarraying (figure 2) is almost
identical to the number of methylated genes (~4000)
identified by the CpG plot shown in figure 1. Together
with the detailed analysis of selected genes presented in

table 1, these results demonstrate that methylated tran-
scription units in Apis are broadly expressed and are likely
to be active in all tissues.

What are the functions provided by genes identified in this 
study as ubiquitously expressed and putatively 
methylated?
We used the Gene Ontology (GO) classification to sort
out the methylated and un-methylated genes into broad
functional categories and found significant differences in
a number of categories (figure 4). As expected, genes
encoding essential metabolic and energy transfer enzymes
are more abundant in the methylated group than in the
unmethylated group (21.6% versus 12%, p = 7.15*10-13,
hypergeometric test). One example of a methylated highly
conserved gene is triose-phosphate isomerase (TPI, EC
5.3.1.1) that plays a key role in glycolysis and is essential
for efficient energy production. TPI not only provides a
vital cellular function, but also is found in virtually all liv-
ing creatures. Only non-glycolytic bacteria, like ureaplas-
mas, lack TPI. Other functional categories over-
represented in the methylated set are nucleic acid and
chromatin binding (12.5% v. 7.3%, p = 9.31*10-7). These
highly conserved proteins may regulate the translation of
RNA, and post-transcriptional events, such as RNA splic-
ing and editing, nucleolytic cleavages and chromosome
packaging among other functions. In contrast, the meth-
ylated group has significantly fewer genes encoding tran-
scription factors than the unmethylated group (6% v
22.5%, p = 2.64*10-40). Furthermore, the smaller fraction
of methylated TFs appears to be of a universal type
belonging to the general transcription factor (GTF) cate-
gory, as exemplified by the TATA-binding protein (TBP)
that is used by all three RNA polymerases. Likewise, genes
associated with signal transducing activities are under-rep-
resented in the methylated category (0.9% versus 2.8%, p
= 4.60*10-5). Thus, in spite of an unrefined meaning of
GO classification, the general functional categories
revealed by this approach are surprisingly relevant and
strongly suggest that methylated genes in honey bees
encode conserved proteins involved in core cellular proc-
esses. We note that the honey bee GO diagrams are very

Table 2: Percentages of cDNAs, positive controls and negative controls expressed under various experimental conditions (see 
materials and methods for more details).

Condition cDNA (%) Positive controls (%) Negative controls (%)

Antennae 70.45 100 0
Brains 59.82 100 0
HP Gland 14.47 75 0
Thoraces 38.18 75 0
Ovaries 71.66 100 0
Larvae 49.22 75 0
RNA Cocktail 67.04 100 0
Blank 0.84 0 0
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similar to those generated by an analogous analysis of
16,310 Arabidopsis genes, 26% of which are predicted to
be methylated [9].

Discussion
One unifying theme of the honey bee methylome is the
broad pattern of expression of methylated genes indicat-
ing that gene activities required for the core cellular func-
tions might be controlled, at least partly, by epigenetic
means. Although these ubiquitously expressed genes may
not represent the nominal size of the 'housekeeping' tran-
scriptome in this organism, it seems likely that they are
constitutively expressed in time and space. Such perma-
nently activated genes providing 'maintenance' functions
required by virtually all cells have been typically described
in the past as unregulated. However, it has been suggested
that in spite of their permanent activation the 'housekeep-
ing' genes might not be required at the same level
throughout development [26], or under changing envi-
ronmental conditions. Indeed, evidence suggests that
even most stable transcripts are sensitive to both biotic
and abiotic external influences [27,28]. Our data add
more weight to the notion that the activities of 'house-
keeping' transcripts and their products might be modu-

lated by epigenetic means. Such a mechanism may also
exist in other organisms [9,20] suggesting that a direct
relationship between gene methylation and transcription
is a widely spread phenomenon in both the animal and
plant kingdoms.

In mammals, the majority of promoters driving the
'housekeeping' genes are associated with CpG islands
[29]. These genomic regions containing a high frequency
of CG nucleotides are typically not methylated with the
exception of CpG islands on the inactive X chromosome
and in disease situations. In contrast to mammals, the
broadly expressed genes in Apis do not have CpG islands,
whereas two out of six unmethylated genes with restricted
patterns of expression selected for our detailed analyses
(GOX and Impl3) are associated with classic CpG islands
(table 1). GOX is stringently regulated and its expression
is exceptionally high in the HP gland of nurse bees,
whereas Impl3 is predominantly a larval gene, and its dif-
ferential expression in worker and queen larvae is part of
a network that determines the reproductive fate of female
bees [19]. Although Impl3 is not directly methylated
(table 1), its expression is reduced in Dnmt3-silenced lar-
vae or by feeding royal jelly [19,30], suggesting that both
unmethylated and methylated genes might be influenced
by epigenetic controls in highly interconnected regulatory
network structures. In honey bees, diet-induced changes
in methylation levels lead to metabolic acceleration and
increased growth driven by global, but relatively subtle
changes in the expressional levels of a large number of
genes [19,30]. These initial changes are later followed by
the activation of more specific pathways to lay down
caste-specific structures, such as pollen collecting combs
on workers' legs that are built during pupal stages. Thus,
instead of inventing two separate developmental blue-
prints, the bees differentially use one common plan to
produce two distinct organismal outputs [17]. Here the
entire network rather than its individual components
evolved to create an alternative developmental trajectory.
This might occur if a given phenotype is biologically reg-
ulated by large numbers of subtle gene expression differ-
ences that act additively, in cascade leading to a major
change in the topology of a global network of interacting
genes ([31-34] and references therein). A recent in silico
analysis confirms that queen-worker transcriptional dif-
ferences are associated with genes showing distinct CpGo/
e ratios [35]. The epigenetic regulation of phenotypic pol-
ymorphism in honey bees is an example of the adaptive
value of phenotypic plasticity that was the driving force in
generating the reproductive division of labour in social
insects.

Like in other invertebrates [10,20] the global level of
genome methylation in Apis is low and appears to be
restricted to CpGs residing in coding exons [16,36]. It has

Venn diagram showing the overlap of gene expression pro-files between five experimental conditions: antennae, brains, thoraces, ovaries and larvaeFigure 2
Venn diagram showing the overlap of gene expres-
sion profiles between five experimental conditions: 
antennae, brains, thoraces, ovaries and larvae. Only 
five conditions were selected for this diagram (it is impossi-
ble to plot a Venn diagram in two dimensions with more than 
five sets using ellipses [48]). ArrayExpress accession: E-
MEXP-2093.
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been argued [14,10] that global methylation, a hallmark
of vertebrate genomes, arose within the phylum Chordata
at the time when vertebrates originated, and was a major
source of innovation at the genomic level. However,
Regev et al [11] concluded that methylation, originally
used as a general repressor of genomic parasites, was
recruited to perform gene regulatory functions well before
the transition from invertebrates to vertebrates. One pos-
sibility is that transcriptional regulation by DNA methyla-
tion is an ancient mechanism of gene control that was
adequate for primordial metazoan species with limited
cell type and tissue repertoires. As animal evolution pro-
gressed, novel regulatory mechanisms operating via pro-
moters and sequence-specific transcription factors (TFs)
were invented to generate both the developmental sophis-
tication and cellular diversity that characterise modern
animals. As a result, organismal complexity is largely

instantiated at the level of differential gene expression that
evolved by combining the specific TFs, differential splic-
ing, non-coding RNAs, chromatin remodeling and epige-
netic modification of genomic DNA by methylation [1].
In this context, the lack of an obvious correlation between
gene number and apparent morphological and behavioral
complexities of diverse organisms in different phyla [37]
is not surprising. While the combinatorial interactions of
TFs and their targets are now well understood [38,39], the
role(s) of epigenetic modifications in gene regulation are
only beginning to be unraveled.

The results presented in this paper have important impli-
cations for the field of evolutionary developmental biol-
ogy (evo-devo). A prominent view in this field is that
morphological diversity is caused primarily by mutations
in the cis-regulatory regions of genes [40], rather than by

Distribution of CpG bias in: i) all Apis predicted transcription units, ii) the ubiquitously expressed genes, and in iii) the condi-tion-specific genes (HP Gland - hypopharyngeal gland)Figure 3
Distribution of CpG bias in: i) all Apis predicted transcription units, ii) the ubiquitously expressed genes, and in 
iii) the condition-specific genes (HP Gland - hypopharyngeal gland).
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changes in protein coding sequences as suggested by other
authors (eg [41]). A compromising proposal [42] predicts
that the relative importance of both cis-regulatory and
protein coding changes will vary depending on factors
such as the position or rank of a gene in a regulatory net-
work, the population dynamics and the evolutionary time
span. In this model, highly interconnected genes are pref-
erentially subjected to cis-regulatory evolution, while
mutations in protein coding sequences are more prevalent
in genes residing in less densely clustered parts of the net-
work. Our results suggest that intragenic methylation
might be an additional constituent of the cis-regulatory
machinery regulating the components of densely con-
nected metabolic and information processing networks
constitutively expressed in most cells. In contrast, effector
genes responsible for cell differentiation and specializa-
tion might not require these rich and complex regulatory
inputs, and would not be methylated.

To understand the relevance of epigenetic influences on
regulatory networks to developmental and evolutionary
transitions, studies of the same genes and their interacting
partners are required in different phyla. By comparing epi-
genomes, with their developmental end-points from dif-
ferent phyla we should be able to reveal what is
functionally common and what is different. The emerging
field of insect epigenomics will undoubtedly accelerate
these efforts by providing novel and exciting data on
genome-wide analyses of TF-binding sites, histone modi-
fications, DNA methylation and context-dependent gene
expression.

Conclusion
In conclusion, we show that approximately one third of
the annotated gene set in Apis mellifera is expected to be
methylated at the CpG dinucleotides residing in intra-
genic regions of conserved genes involved in core 'house-
keeping' biological functions. Our data suggest that DNA
methylation is an ancient epigenetic mechanism that was
tailored to be part of modern regulatory networks. Thus,
these findings go beyond epigenetics and touch upon the
invention of genome-wide regulatory networks in mod-
ern animals with important implications for the emer-
gence of organizational complexity during metazoan
evolution. We propose to compare epigenomes, with their
developmental end-points from different phyla to ascer-
tain what is functionally common and what is different.
In this context, the emerging field of insect epigenomics
might be particularly useful in unravelling the underlying
mechanisms of environmentally-driven phenotypic and
behavioural plasticity.

Methods
Microarray platform
The details of the first generation Apis mellifera genomic
array can be found at: http://www.biotech.uiuc.edu/cent
ers/Keck/Functional_genomics/
Honey%20Bee%20Oligo.htm. Briefly, long oligos for the
array were developed by Debashis Rana and Gos Micklem
at Cambridge University http://www.gen.cam.ac.uk/
Research/micklem.htm, using a modified version of Oli-
goArray 2.1 to identify unique sequences (60-69 mers)
each of the bee genes in the honey bee genome project

Functional categorization of methylated and unmethylated genes based on Gene Ontology (GO) classificationFigure 4
Functional categorization of methylated and unmethylated genes based on Gene Ontology (GO) classification. 
GO terms were assigned to honey bee predicted proteins using the corresponding GO terms of their BLASTP hits in the Ref-
Seq Drosophila protein database. If the best hit did not have any associated GO terms, the best subsequent hit with associated 
GO terms was used and no GO terms were assigned to honey bee proteins that did not have any GO annotated hit with an e-
value smaller than 1e-5. For illustration purposes only molecular function level 3 ontology terms (where Level 0 = root = 
Gene_ontology) were selected and grouped into larger categories. See additional file 4 for more details.
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'official gene set' [43,44] deposited at http://www.bee
base.org. A total of 12,915 unique oligos were generated.
Details on source sequences, which encompassed honey
bee predicted genes, EST's and markers for bee parasites
and pathogens available at http://www.beespace.UIUC.
edu/BeeArray. Reverse-strand oligos were added for 525
predictions, focusing on EST reads and transcripts pre-
dicted for bee pathogens (table two in file ArrayDevelop-
ment.rtf at the above web site). As such, the final set
contains 13,439 oligos (sequences in Array_fasta/
Oligoset13440.txt at the above web site). The platform
contains five types of spots (additional file 3): 13,439
honeybee cDNA probes were printed at least twice, result-
ing in 26,880 cDNA spots; 25 negative control probes
(microbial or plant DNA) printed at least 12 times each
(348 negative control spots); 4 positive control probes
printed 96 times each (384 positive control spots); 384
spots were left blank and 802 spots were printed with
buffer only. The array features are summarized in addi-
tional file 3.

DNA and RNA extractions and other molecular protocols
Bees were collected and dissected as described elsewhere
[19]. DNAs were extracted as described in [16] and
bisulfite converted using the QIAGEN Epitect Bisulfite Kit
[19]. RNA extractions, labelling and array hybridization
were performed according to standard protocols with
minor modifications [19,33]. With the exception of the
RNA cocktail RNA extractions were done in triplicates or
in duplicates (HP gland). The cocktail was a mixture of
poly-adenylated mRNAs, other preparations were total
RNAs. Total RNAs were extracted via the combined Trizol/
QIAGEN method [45] and mRNAs purified using the
magnetic beads from Dynal. RNA cocktail was a subjective
mixture of the following RNAs (the proportion of each
RNA in the final pool is shown in brackets): mixed 0-72
hr embryos (1%); mixed larvae, including queen larva
(13%); mixed pupae (20%); adult brains, including drone
and queen brains (13%); thorax muscles (12%); worker
whole abdomens (15%); queen ovaries (15%); testes and
queen spermathecae (3%); whole queen (5%); append-
ages (antennae, legs, wings) (3%); mixed glands (0.1%).
Although the cocktail was not taken into account in the
ubiquitous/restricted analysis, its hybridization profile
served as a useful control to evaluate the 'biological
power' of the genomic microarray.

Other molecular protocols including cDNA or cRNA
labelling, hybridization, PCR and sequencing are
described elsewhere [33,45,46]. Each amplified RNA sam-
ple was labelled with Cy3 and independently with Cy5.
The labelled samples were mixed and hybridized with
individual slides: antennae - 4 replicates (slides); brains -
4 replicates; cocktail - 2 replicates; HPG - 2 replicates; lar-
vae - 4 replicates; ovary - 3 replicates; thorax - 3 replicates.
The primers used for amplification of the genes shown in

table 1 from bisulfite-treated DNA are shown in addi-
tional file 4.

Microarray analysis
The method chosen for segmenting the images was the
fixed circle method (Eisen, ScanAlyze's user manual,
1999, http://rana.lbl.gov/eisen). This method has been
shown to perform with consistent accuracy on both good
and bad microarray images [47], but outperforms other
methods on images of lower quality. For each spot an
intensity value was computed by subtracting the mean
foreground intensity to the median background intensity.
By detailed inspection of the images we established that
the surfaces of blank and buffer spots had different prop-
erties than those where DNA probes were printed, proba-
bly resulting in different optical behaviours. For this
reason, and in order to potentially adjust for cross-hybrid-
ization effects, only plant and microbial DNA negative
control spots were used to determine an empirical null
distribution for each array and channel. Three negative
control probes were removed from the analysis as their
signal was consistently biased toward high intensities (1-
L22585_IVT_6, 1-modified_GFP_39 and 1-Q9LJQ4_
IVT_1). A probability of expression, Psca, where 's'
denotes the intra-array replicates, 'c' the channel and 'a'
the array, was derived for each spot by comparing its
intensity to the null distribution (the distribution of the
negative controls on the same array, in the same channel).
Each gene was printed at least twice on each array, each
array had two channels, and at least two hybridisations
were conducted for each condition. Thus, the experiment
yielded at least eight Psca values for each gene. The
median of these Psca values was used as an estimate of the
probability of a gene expression for a given experimental
condition. Computations were conducted using python
and R scripts available from the authors upon request.
Since spots are only compared to negative controls on the
same array using the same channel, our method allows
comparisons of microarrays from different experiments
without any normalisation. Other experimental details
are shown in additional file 4. ArrayExpress accession: E-
MEXP-2093. All scripts used in this work are freely avali-
bale from the authors.

CpG analysis
The CpG bias of a sequence is defined as the ratio of the
observed frequency of CpG dinucleotides divided by the
expected frequency of CpG dinucleotides where the
expected number of CpG dinucleotides is the product of
the frequency of C and G nucleotides in a given sequence.
When no Cs or no Gs are observed, the CpG bias is arbi-
trarily set to one. CpG islands were identified using Alan
Bleasby's (EBI) cpgplot at the Pasteur Institute with
default parameters http://bioweb2.pasteur.fr/intro-en.
html.
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Additional file 1
Proportion of cDNA spots found expressed on each array and for each 
channel in different experiment. This PDF displays a graph expressing 
Proportion of cDNA spots found expressed on each array and for each-
channel in different experiment.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-472-S1.PDF]

Additional file 2
The correlation between ubiquitous genes and low CpG o/e ratio holds 
at different thresholds at which genes are considered expressed in 
microarray experiments. The columns show three different thresholds for 
gene presence/absence calls. The first column lists three different ques-
tions, the null hypotheses are the "No" answers to these questions. The p-
values for the rejection of the null hypotheses are reported in each cell.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-472-S2.DOC]

Additional file 3
Summary of the types and number of features present on the honey bee 
oligonucleotide array. This word document contains a table expressing 
Summary of the types and number of features present on the honey bee oli-
gonucleotide array.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-472-S3.DOC]

Additional file 4
Gene ontology. Supplementary methods: Gene Ontology, Primers for 
bisulfite sequencing, Array methodology.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-472-S4.DOC]
Page 10 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-10-472-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-472-S2.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-10-472-S3.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-10-472-S4.DOC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15920525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15920525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16651365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16651365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11782440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17466503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17466503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12610534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16854438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16854438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522676
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18577705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18577705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18577705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17128275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17128275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17128275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9032274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9032274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1968655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1968655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1968655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7732579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7732579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15952895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17068262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17068262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18719401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17295216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17295216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18339900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18339900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17420183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17420183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19005573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19005573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19005573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15889055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15846361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12823867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773595


BMC Genomics 2009, 10:472 http://www.biomedcentral.com/1471-2164/10/472
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De
Paepe A, et al.: Accurate normalization of real-time quantita-
tive RT-PCR data by geometric averaging of multiple inter-
nal control genes.  Genome Biol 2002, 3:RESEARCH0034.

28. Gibson G: The environmental contribution to gene expres-
sion profiles.  Nat Rev Genet 2008, 9:575-81.

29. Zhu J, He F, Hu S, Yu J: On the nature of human housekeeping
genes.  Trends Genet 2008, 24:481-484.

30. Barchuk AR, dos Santos Cristino A, Kucharski R, Simões ZLP,
Maleszka R: Molecular determinants of caste differentiation in
the highly eusocial honeybee Apis mellifera.  BMC Dev Biol
2007, 7:70.

31. Miklos GL, Maleszka R: Integrating molecular medicine with
functional proteomics: realities and expectations.  Proteomics
2001, 1:30-41.

32. Miklos GL, Maleszka R: Microarray reality checks in the context
of a complex disease.  Nat Biotechnol 2004, 22:615-621.

33. Thompson GJ, Kucharski R, Maleszka R, Oldroyd BP: Genome-wide
analysis of genes related to ovary activation in worker honey
bees.  Insect Mol Biol 2008, 17:657-665.

34. Wittkopp PJ: Variable gene expression in eukaryotes: a net-
work perspective.  J Exp Biol 2007, 210:1567-1575.

35. Elango N, Hunt BG, Goodisman MA, Yi SV: DNA methylation is
widespread and associated with differential gene expression
in castes of the honeybee, Apis mellifera.  Proc Natl Acad Sci USA
2009, 106:11206-11211.

36. Wang Y, Leung FC: In silico prediction of two classes of honey-
bee genes with CpG deficiency or CpG enrichment and sort-
ing according to gene ontology classes.  J Mol Evol 2009,
68:700-7005.

37. Miklos GL, Maleszka R: Deus ex genomix.  Nature Neurosci 2000,
3:424-425.

38. Lee TI, Young RA: Transcription of eukaryotic protein-coding
genes.  Annu Rev Genet 2000, 34:77-137.

39. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks
F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG: Methyl-
transferase recruitment and DNA hypermethylation of tar-
get promoters by an oncogenic transcription factor.  Science
2002, 295:1079-1082.

40. Caroll SB, Grenier JK, Weatherbee SD: From DNA to diversity:
molecular genetics and the evolution of animal design.  Black-
well publishing, Malden, MA; 2005. 

41. Hoekstra HE, Coyne JA: The locus of evolution: evo devo and
the genetics of adaptation.  Evolution 2007, 61:995-1016.

42. Stern DL, Orgogozo V: Is genetic evolution predictable?  Science
2009, 323:746-751.

43. The Honeybee Genome Sequencing Consortium: Insights into
social insects from the genome of the honeybee Apis mellif-
era.  Nature 2006, 443:931-949.

44. Robinson GE, Evans JD, Maleszka R, Robertson HM, Weaver DB,
Worley K, Gibbs RA, Weinstock GM: Sweetness and Light: Illu-
minating the Honey Bee Genome.  Insect Mol Biol 2006,
15:535-539.

45. Kucharski R, Maleszka R: Microarray and rtPCR analyses of
gene expression in the honey bee brain following caffeine
treatment.  J Mol Neurosci 2005, 27:269-276.

46. Kucharski R, Maleszka R: Molecular profiling of behavioural
development: differential expression of mRNAs for inositol
1,4,5-trisphosphate 3-kinase isoforms in naive and experi-
enced honeybees (Apis mellifera).  Mol Brain Res 2002, 99:92-101.

47. Lehmussola A, Ruusuvuori P, Yli-Harja O: Evaluating the perform-
ance of microarray segmentation algorithms.  Bioinformatics
2006, 22:2910-2917.

48. Edwards AWF: Cogwheels of the Mind: the story of Venn dia-
grams.  Johns Hopkins University Press, Baltimore and London;
2004. 

49. Foret S, Maleszka R: Function and evolution of a gene family
encoding odorant binding-like proteins in a social insect, the
honey bee (Apis mellifera).  Genome Res 2006, 16:1404-1413.
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18574472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18574472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18786740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18786740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17577409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11680896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11680896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15122300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15122300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19133075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19133075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19133075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17449821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17449821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19556545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19556545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19556545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19466376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19466376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19466376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10769377
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11092823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11092823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11834837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11834837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11834837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17492956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17492956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19197055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17069628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17069628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280596
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11978400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17032673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17032673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17065610
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Predicting the methylation status of transcription units in Apis mellifera
	Genome-wide profiling of gene expression in Apis using oligo microarrays
	Tissue-specific and ubiquitous profiles of expression
	Condition-specific and ubiquitous genes
	What are the functions provided by genes identified in this study as ubiquitously expressed and putatively methylated?

	Discussion
	Conclusion
	Methods
	Microarray platform
	DNA and RNA extractions and other molecular protocols
	Microarray analysis
	CpG analysis

	Authors' contributions
	Additional material
	Acknowledgements
	References

