Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora

Reyes-Bermudez, Alejandro, Lin, Zhiyi, Hayward, David C., Miller, David J., and Ball, Eldon E. (2009) Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evolutionary Biology, 9 (178). - .

[img] PDF
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1186/1471-2148-9-17...

Abstract

Background: The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora.

Results: One of the Acropora genes (Amgalaxin) encodes a clear galaxin ortholog, while the others (Amgalaxin-like 1 and Amgalaxin-like 2) encode larger and more divergent proteins. All three proteins are predicted to be extracellular and share common structural features, most notably the presence of repetitive motifs containing dicysteine residues. In situ hybridization reveals distinct, but partially overlapping, spatial expression of the genes in patterns consistent with distinct roles in calcification. Both of the Amgalaxin-like genes are expressed exclusively in the early stages of calcification, while Amgalaxin continues to be expressed in the adult, consistent with the situation in the coral Galaxea.

Conclusion: Comparisons with molluscs suggest functional convergence in the two groups; lustrin A/pearlin proteins may be the mollusc counterparts of galaxin, whereas the galaxin-like proteins combine characteristics of two distinct proteins involved in mollusc calcification. Database searches indicate that, although sequences with high similarity to the galaxins are restricted to the Scleractinia, more divergent members of this protein family are present in other cnidarians and some other metazoans. We suggest that ancestral galaxins may have been secondarily recruited to roles in calcification in the Triassic, when the Scleractinia first appeared. Understanding theevolution of the broader galaxin family will require wider sampling and expression analysis in a range of cnidarians and other animals.

Item ID: 11011
Item Type: Article (Refereed Research - C1)
ISSN: 1471-2148
Date Deposited: 10 May 2010 22:50
FoR Codes: 06 BIOLOGICAL SCIENCES > 0608 Zoology > 060803 Animal Developmental and Reproductive Biology @ 40%
06 BIOLOGICAL SCIENCES > 0604 Genetics > 060409 Molecular Evolution @ 20%
06 BIOLOGICAL SCIENCES > 0604 Genetics > 060405 Gene Expression (incl Microarray and other genome-wide approaches) @ 40%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100%
Citation Count from Web of Science Web of Science 18
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page