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INTRODUCTION

Apportioning biological variation between intrinsic
(i.e. ontogenetic) and extrinsic (i.e. environmental) va-
riables amongst free-ranging vertebrates is a central
challenge in understanding how environmental factors
influence populations, with particular relevance for
predicting the effects of future environmental change.
The present study examines this question in a species

of seal that is exposed to considerable interannual and
long-term variation in its food supply.

The biological response of top predators may be
influenced by direct factors, such as changes in habitat
availability, as well as indirect factors, such as prey
abundance and distribution, that result in changes to
competitive dynamics between species sharing
resources (Croxall et al. 1992, Constable 2006). Long-
term monitoring of the diet of top predators can pro-
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vide information concerning trophic dynamics at the
ecosystem level as well as population dynamics of both
predators and their prey (Croxall 2006, Reid et al.
2006). In some circumstances, such as in the Southern
Ocean, characterising and understanding the relation-
ships between top predators, their prey and environ-
mental variability represents an important step to-
wards ecosystem-based management of populations of
commercially exploited species (Constable 2006).

While approaches to trophic studies have included
stomach and scat analysis, radio-labelling and, more
recently, quantitative fatty acid analysis, stable iso-
topes of carbon and nitrogen are increasingly used to
better inform ecologists of trophic relationships. Preda-
tors are typically enriched in 15N relative to their prey,
with an average increase of 3.3 ± 0.26‰ between
trophic levels (McCutchan et al. 2003), and therefore,
δ15N values can be used to resolve trophic positions
(Peterson & Fry 1987). In contrast, δ13C values vary less
(~1‰) between trophic levels but are often used to
indicate the geographic source of prey items due to
well-documented variation in δ13C with different
photosynthetic processes (Hobson 1999). In the marine
environment, phytoplankton δ13C values can vary in
relation to cell physiology, morphology, growth and
the source of inorganic carbon (Michener & Schell
1994, Burkhardt et al. 1999). Variations in the δ13C val-
ues of some animals can be linked to benthic versus
pelagic or nearshore versus offshore feeding habitats
(Hobson et al. 1994, Michener & Schell 1994, Hobson
1999, Cherel & Hobson 2007).

Pinnipeds show incremental growth in their teeth
throughout their lives. Thus, the life-history of individ-
ual animals may be reflected in the incremental pat-
tern of growth, represented as both the rate of change
in tooth growth and changes in the chemical composi-
tion of each growth layer (Boyd & Roberts 1993, New-
some et al. 2006, Newsome et al. 2007). Like the teeth
of many seal species, the teeth of Antarctic fur seals
Arctocephalus gazella are formed from annular
growth layers of dentin. These layers form a series of
stacked cones, the outer edges of which are visible on
the exterior of the tooth and have been used to deter-
mine the age and relative growth rate of individuals
(Boyd & Roberts 1993).

These layers, called ‘annuli’, are presumed to be
metabolically inert after their formation. Thus, the iso-
topic compositions of annuli are thought to encode a
temporal record that can be used to examine changing
diet and trophic status throughout the life of an indi-
vidual animal (Hobson & Sease 1998, Balasse et al.
2001, Newsome et al. 2006, 2007, Knoff et al. 2008).
Additionally, variations in the width of each annulus
may be related to variations in the growth of the ani-
mal (Boyd & Roberts 1993), serving as a proxy mea-

surement of growth rate that may correlate with the
total food available to individuals at different stages of
their lives. However, there is a natural and constant
decline in annulus width with the age of the animal
that must be taken into account before relating this
information to food availability or growth (Boyd &
Roberts 1993). The teeth of Antarctic fur seals have
the potential to offer an insight into their trophic life-
history and, potentially, into broader environmental
variability.

When the teeth of seals dying of natural causes are
collected over time and in sufficient numbers, it is
possible to build a time-series of changes in chemical
composition and layer deposition. These patterns can
be used in 2 main ways: (1) to examine life histories of
individuals and (2) to examine changes in relation to
the calendar year of deposition. In the present study,
we use contrasting insights from these records to
examine the hypotheses that dietary variation, reflec-
ted in dietary C and N, and annulus width are affected
at least as strongly by intrinsic factors, such as ontoge-
netic development or longevity, as they are by extrinsic
factors, such as environmental conditions. We also use
time series of stable isotope variation to investigate
broad-scale perturbations and long-term changes in
marine ecosystems that may be commonly reflected in
the biological responses of top predators (Forcada et al.
2005, Croxall 2006, Murphy et al. 2007). We reason
that since fur seals that breed on South Georgia range
widely over a region that is characterised by highly
dynamic oceanographic conditions (Boyd et al. 1998,
2002), any residual signal contained within fur seal
teeth, once intrinsic life-history effects are partitioned
out, is likely to reflect general ecological changes at a
regional scale.

MATERIALS AND METHODS

Tooth preparation and stable isotope analysis.
Antarctic fur seal teeth were collected from males that
died of natural causes at breeding beaches on Bird
Island, South Georgia (54° 00’ S, 38° 03’ W) during
December to January. Left and right upper canines
were extracted after the carcass had decayed suffi-
ciently to allow extraction using tooth pliers. We ran-
domly selected a sub-sample of these teeth, archived
at the British Antarctic Survey (Cambridge, UK) and
the Sea Mammal Research Unit (St. Andrews, UK) for
analysis.

An average of 10 teeth were selected from a series of
collection years for which teeth were available: 1971,
’76, ’78, ’79, ’87, ’91, ’92, ’93, ’94, ’95, ’98, ’99, ’01, ’04
and ’06 (collection years are referred to by the second
year of the season as in Forcada et al. 2005). Consider-
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ing that up to 10 dentinal annuli were sampled from
each tooth, this meant that samples were available for
annuli laid down in all years from 1961 to 2005. Each
whole tooth was sawn in half using a diamond-burred
circular saw and one half soaked in 10% formic acid
overnight to etch the surface of the tooth and facilitate
visual discrimination between individual annuli. The
age of the animal was estimated by counting indi-
vidual growth layer groups (GLGs) determined as one
depressed, etched section and one raised, un-etched
section. The number of GLGs was counted 3 times by a
single observer. If 2 of the 3 estimates were the same,
that age became the best estimate for that tooth. If all
estimates differed by no more than a year, then the
mean of these estimates was used. If estimates differed
by more than 1 yr, the section was re-examined. Each
layer width was measured where growth layers were
parallel in the center of the dentin and in a step-wise
manner so as to account for all layers (as in Boyd &
Roberts 1993) using digital callipers (Fig. 1). The stan-
dard deviation of measurements was estimated to be
0.09 mm based on re-analysis of 20% of canine teeth.
Each annulus was then assigned to a calendar year by
back-counting from the calendar year of collection
using the age at death. A total of 141 teeth were cut,
aged and measured.

Approximately 2 to 3 mg of dentin was extracted for
isotope analysis from individual growth layers using an
electric drill with a 900 µm diamond-tipped dental burr
(FG801LS-009 Medium Grit). Material from the outer
surfaces was not used in order to prevent any con-
founding isotopic effect of the formic acid treatment on
the external surface of the tooth, and dentin was
drilled to a depth of no more than 500 µm to reduce
contamination from other layers. Material was only
taken from annuli large enough to reliably drill within
the band (mainly the outer annuli deposited in the first
5 yr of life) and, where possible, consecutive samples
were taken from each successive annual growth band.

In order to remove inorganic material, ~1.5 ± 0.1 mg of
powdered dentin was weighed out into silver capsules
then washed with 100 µl 0.5 M HCl and left to dry for 24
to 36 h at 20°C. δ13C and δ15N, and carbon and nitrogen
weight percent (%C and %N, respectively) were deter-
mined using a Costech Elemental Analyzer fitted with a
zero-blank auto-sampler coupled via a ConFloIII to a
ThermoFinnigan DeltaPlusXL using continuous-flow iso-
tope ratio mass spectrometry (CF-IRMS) at the Univer-
sity of St. Andrews Facility for Earth and Environmental
Analysis. Stable isotope results are reported as per mil
(‰) deviations from the Vienna PeeDee Belemnite
(VPDB) and atmospheric N2 reference standard scale for
δ13C and δ15N values, respectively. Precisions (SD) on
internal standards were better than ±0.1 and 0.2‰ for
carbon and nitrogen, respectively.

Data analysis. Two main sources of potential varia-
tion were present in the dataset and had to be statisti-
cally disaggregated. δ13C and δ15N in teeth have previ-
ously been shown to vary throughout an individual
seal’s life history (Hobson & Sease 1998, Newsome et
al. 2006) and when life history profiles are aggregated,
there is also the possibility of multi-decadal and inter-
annual variation in δ13C and δ15N values arising as a
function of this aggregation over the 41 yr time period
for which data were available. In addition, there was
the possibility that differences in stable isotope values
may be related to the longevity of an individual ani-
mal. To partition the variance in the data between
these different variables, and to investigate data in
relation to each variable individually, a series of multi-
ple linear regressions (mixed effects models) including
all combinations of independent variables was per-
formed to model the data. We tabulated the weighted
deviance of all models and compared them using a
chi-squared test for significance (Boyd 1996). Akaike’s
information criterion (AIC) score (Akaike 1976) was
also used when determining the model of best fit.

The effects of individual variables were investigated
using the partial regression coefficients derived from
the best-fitting model. This reduced the effect of the
other variables and helped to reconstruct the effect of
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Fig. 1. Arctocephalus gazella. Diagram of the outer surface
and a longitudinal cut through a 7-yr old male Antarctic fur
seal canine tooth. Growth layer groups (GLGs) were visually
identified and measured on the etched surface of the tooth.
Black horizontal band: area where measurements were
taken. Vertical black lines: where powdered dentin samples 

were extracted for analysis
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each individual explanatory variable. Simple bivariate
linear regressions were then used on data corrected for
other effects to investigate trends in δ13C and δ15N in
relation to each variable (annulus number, age-at-
death and calendar year) individually. Linear regres-
sion was also applied to the annulus width time-series
with the effect of annulus number removed to high-
light variations in tooth growth over time.

Yearly averaged stable isotope time-series (correc-
ted for age-at-death and annulus number) were de-
trended by subtracting the linear trend, and correlated
with 3 similarly de-trended climate indices previously
correlated with biological indices of marine animals in
the Southern Ocean — including Antarctic fur seals
and local krill stocks (Forcada et al. 2005, Murphy et al.
2007). We reasoned that as Antarctic fur seal diet is
highly dependent on the availability of krill in a given
year, proxy measurements of their diet could be
related to the same environmental forcing as krill. We
therefore used annual de-trended grid averages of sea
surface temperature (ERSSTv2) (Smith & Reynolds
2003) and sea ice cover (HadISST1) (Rayner et al. 2003)
from 45 to 80° S and 20 to 100° W, a large region en-
compassing both the breeding and potential feeding
grounds of male Antarctic fur seals, and an observa-
tion-based Southern Annular Mode (SAM) index
(Marshall 2003). We used cross correlation analyses to
explore the relationship between the climate indices
and experimental data lagged up to 2 yr. Statistical
computations were performed in R version 2.4.1 (R
Development Core Team 2005) and time series data
was extracted using the Royal Netherlands Meteoro-
logical Institute Climate Explorer (climexp.knmi.nl).

We explored the use of cross-dating accuracy checks
commonly used in dendrochronology to ensure the
most accurate assignment of growth layers to calendar
years. Individual uncorrected width time series were
correlated to the mean temporal pattern of all other
series from individual animals using the computer pro-
gram COFECHA version 6.06 (Holmes 1983). First
order differencing was used during this process to
reduce the intrinsic linear patterns present within
tooth measurements. The series intercorrelation pro-
vides a measure of the strength of a common signal in
the time series and the program highlights individual
‘problem’ series that may be misdated, suggesting how
series should be shifted in order to improve the overall
temporal signal. In order to improve the chronology,
these series were moved a maximum of 2 yr back in
time because the time of death was known and assign-
ment errors were most likely due to inaccurate identi-
fication of the neonatal line. A re-evaluated chrono-
logy was then related to the same 3 climate indices as
the original chronology to test for any differences due
to the adjustments made.

RESULTS

Statistical models

Statistical modelling of the effects of the set of inde-
pendent variables on δ13C values (see Table 1) pro-
vided an AIC score that was lowest for the model
including an interaction between all 3 explanatory
variables (Model 11): calendar year, annulus number
and age-at-death, while Model 12 (Year + Age × Annu-
lus) provided a marginally lower AIC for δ15N values.
Further inspection of Models 8 to 14 showed that there
were consistent interactions between terms and that
calendar year was especially important. These results
suggest that the response variables depend on a com-
plex interaction between calendar year, age-at-death
and annulus number and that it would be insufficient
to consider one variable without consideration of the
other two. We have attempted to do this by accounting
for the linear effects of other variables in order to high-
light the effect of the variable of interest. The lowest
AIC for annulus width included an interaction between
calendar year and annulus number although there was
a significant interaction between all 3 variables. The
partial regression coefficients used to extract the rela-
tionships for each of the independent variables in the
regression models are provided in Table 2 along with
the descriptive statistics for each resulting dataset. The
linear relationship between raw (uncorrected) data
and each independent variable is shown in Fig. 2.

Variation due to annulus number and age-at-death

Model deviances did not detect any significant effect
of age-at-death on either δ13C or δ15N when δ13C and
δ15N values were adjusted to account for the linear ef-
fects of the calendar year in which the dentin annulus
was deposited and the annulus number (δ13C, χ2 = 11.62,
df = 6, p > 0.05; δ15N, χ2 = 11.77, df = 6, p > 0.05). How-
ever, the developmental stage of the animal had a signif-
icant effect on diet as inferred from both δ13C and δ15N
values. This was because stable carbon isotope values
decreased linearly with annulus number (b = –0.165 ±
0.0411), although this accounted for only 5% of the vari-
ation in the data. But stable nitrogen isotope values in-
creased with annulus number (b = 0.256 ± 0.0297) and
accounted for nearly 23% of the variation in the data.

Temporal variation

A simple least squares linear regression model fitted
to 41 yr of δ13C and δ15N data, excluding the effects of
tooth annulus number and age-at-death, showed there

266



Hanson et al.: Stable isotope analysis of Antarctic fur seals

was a significant decline in both δ13C and δ15N values
in relation to calendar year (δ13C, b = –0.0678 ±
0.00665; δ15N, b = –0.0521 ± 0.00623). Additionally,
both δ13C and δ15N appeared to oscillate over time
(Fig. 3). After accounting for the effect of decreasing
annulus width with age, there was also a significant
linear decline in annulus width from 1961 to 2005 (b =
–0.005 ± 0.001). According to this regression, there was

an average 0.225 mm decrease in annulus width over
the 41 yr data series.

In addition to these long-term declines, δ13C values
were negatively correlated with sea surface tempe-
rature (SST) (°C) values in the same year (Pearson
product-moment correlation, p = 0.0128, df = 39, r =
–0.385). No other significant patterns appeared from
the cross-correlation analysis.
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Table 1. Results of multiple regression analyses relating stable carbon and nitrogen isotope values and annuli width measure-
ments to calendar year, annulus number and age-at-death (degrees of freedom are given in parentheses). *p < 0.05; *p < 0.01; 

***p < 0.001; ns: not significant. Model deviances, R2 and AIC values are also given

Model k Year Annulus Age Annulus × Year × Year × Year × Annulus R2 Deviance AIC
(40) (6) (6) Age Age Annulus × Age (%)

δδ13C
11 9 – – – – – – *** 39.40 29.03 756.50
13 6 – – ns – – *** – 37.80 38.79 760.26
14 6 – ns – – *** – – 37.10 41.28 762.75
12 6 *** – – *** – – – 36.30 44.46 765.93
10 5 – – – – – *** – 35.10 29.03 769.64
7 5 *** * ns – – – – 35.40 48.50 770.84
9 5 – – – – *** – – 33.20 50.17 777.09
4 4 *** * – – – – – 32.80 59.30 779.61
5 4 ** – ns – – – – 31.60 63.70 784.00
1 3 *** – – – – – – 28.50 76.10 794.44
8 5 – – – *** – – – 12.50 124.98 844.45
6 4 – ns *** – – – – 11.10 129.60 849.95
3 3 – – *** – – – – 9.70 134.50 852.82
2 3 – ns – – – – – 1.80 155.60 873.91

δδ15N
12 6 *** – – *** – – – 52.40 –133.29 588.18
11 9 – – – – – – *** 52.80 –138.49 588.98
13 6 – – ns – – *** – 50.20 –122.06 599.41
7 5 *** *** ns – – – – 48.80 –114.06 605.41
14 6 – *** – – *** – – 48.80 –114.86 606.61
10 5 – – – – – *** – 48.10 –110.45 609.02
4 4 *** *** – – – – – 46.70 –103.20 614.31
5 4 *** – ns – – – – 34.00 –49.68 667.79
9 5 – – – – *** – – 33.90 –50.07 669.40
1 3 *** – – – – – – 33.00 –44.60 670.83
8 5 – – – *** – – – 31.50 –41.30 678.17
6 4 – *** *** – – – – 26.30 –24.31 693.16
2 3 – *** – – – – – 19.10 2.30 717.80
3 3 – – ** – – – – 6.40 38.80 754.27

Annulus width
10 5 – – – – – *** – 27.30 –2932.84 –67.93
11 9 – – – – – – *** 27.60 –2940.68 –67.77
13 6 – – ns – – *** – 27.30 –2932.87 –65.96
4 4 ns *** – – – – – 26.90 –2926.31 –63.41
7 5 ns *** ns – – – – 26.90 –2926.37 –61.47
14 6 – ns – – *** – – 26.90 –2928.10 –61.20
12 6 ns – – *** – – – 26.80 –2926.39 –59.49
6 4 – *** ns – – – – 23.80 –2884.77 –21.86
2 3 – *** – – – – – 23.70 –2882.12 –21.22
8 5 – – – *** – – – 23.80 –2885.00 –20.10
5 4 *** – ns – – – – 11.10 –2729.18 133.73
9 5 – – – – *** – – 11.10 –2730.22 134.69
1 3 *** – – – – – – 10.10 –2717.35 143.56
3 3 – – *** – – – – 3.40 –2645.36 215.54
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Chronology validation

We found that 36.8% of individual annulus width
series and 35.6% of isotope series were more closely
aligned with the total time series mean pattern once
shifted by 1 to 2 yr. However, these shifts did not sig-
nificantly improve the standard error of the mean
time series except for δ13C (2-tailed t-test, df = 37, p <
0.05), suggesting that, overall, tooth chronologies
were adequately determined in the first instance. The
re-evaluated series were not significantly cross-
correlated with any environmental time series, al-
though the relationship between δ13C and SST re-
mained strong (p = 0.065, df = 39, r = –0.29).

DISCUSSION

Intrinsic effects

We found evidence for consistent changes in stable
isotope ratios over the first 7 yr of the lives of male
Antarctic fur seals once the variation due to the calen-
dar year of deposition and the age-at-death of the ani-
mal was removed. Considering that relatively few
male seals live more than 10 yr (Boyd & Roberts 1993),
this suggests that the trophic level at which male
Antarctic fur seals forage, and their source of carbon,
changes systematically during the period of rapid
growth included in this analysis (Payne 1977). Other
studies of pinniped teeth (Hobson & Sease 1998, New-
some et al. 2006) have observed high δ15N and low δ13C
values in the first 1 to 2 yr of life presumably due to the
metabolic routing of milk protein and lipids during
nursing. However, Newsome et al. (2006) found this
pattern lacking among male Northern fur seals, pre-
sumably due to the short (~4 mo) lactation period, a
characteristic shared with Antarctic fur seals. Both
studies note that there is a large amount of variation in
ontogenetic patterns among individuals.

In the present study we have used larger sample sizes
and have described the linear change in δ15N and δ13C
values into the 7th year of life, when animals are physi-
cally and sexually mature, thus creating a more com-
plete view of ontogenetic variation than previous stud-
ies. While not statistically different, when δ15N values
were averaged for each annulus there was a peak at
Year 2 followed by a decrease of nearly 1‰ in the third
year. Estimates of isotopic equilibration of dentin after a
switch in diet have been suggested to be between 1 to
4 mo (Balasse et al. 2001). As weaning occurs after
approximately 4 mo in these animals, it is plausible that
a milk-derived δ15N signal could influence the isotopic
profile throughout the first ~8 mo of dentin growth. Lit-
tle information is available about post-weaning diet;
Warren et al. (2006) tagged 5 male pups after weaning
and found that they moved progressively offshore to
more oceanic conditions throughout the first winter, po-
tentially following the availability of prey items. This
change in foraging location could mask any δ15N signal
due to the short lactation period and contribute to a
decrease in δ15N values in the third year if pups begin
to forage predominately on krill at this time. However,
it is difficult to draw firm conclusions without more
detailed information on juvenile diet.

Because the common prey species of Antarctic fur
seals are known to encompass at least 3 different
trophic levels (e.g. krill, krill-eating fish, and piscivo-
rous fish and sea-birds) our results showing an ontoge-
netic increase in δ15N values indicate that male Antarc-
tic fur seals tend to forage on higher trophic level prey
as they age. Antarctic krill sampled around the Antarc-
tic Peninsula and the Lasarev Sea had δ15N values of
3.6‰, whereas fish species sampled around the Falk-
land Islands and the Antarctic Peninsula had values
ranging from 8.4 to 11‰ (Dunton 2001, Cherel et al.
2002, Schmidt et al. 2003). Thus, the ontogenetic in-
crease in δ15N values in Antarctic fur seals dentin indi-
cates that they are including more krill-eating and/or
piscivorous fish in their diets rather than directly feed-
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Table 2. Descriptive statistics for the original datasets and each subsequent dataset calculated from the partial regression coeffi-
cients (b) for Year, Annulus and Age

Variable Corrected for: Mean SE Minimum Maximum Units n b(Year) b(Annulus) b(Age)

δ13C Uncorrected –18.88 0.09 –22.48 –14.82 ‰ 250 –0.068 –0.163 –0.158
δ13C Year, Age-at-death –21.52 0.01 –26.05 –21.52 ‰ 250
δ13C Annulus, Age-at-death –20.61 0.01 –24.10 –16.74 ‰ 250
δ13C Year, Annulus –17.07 0.07 –20.01 –13.37 ‰ 250
δ15N Uncorrected 9.87 0.07 7.59 14.13 ‰ 250 –0.052 0.256 –0.115
δ15N Year, Age-at-death 7.89 0.01 5.15 12.80 ‰ 250
δ15N Annulus, Age-at-death 9.76 0.01 7.06 14.76 ‰ 250
δ15N Year, Annulus 10.17 0.07 8.45 13.36 ‰ 250
Annulus width Uncorrected 0.81 0.01 0.30 2.10 mm 1006 –0.0052 –0.0494
Annulus width Year 0.95 0.01 0.41 1.08 mm 1006
Annulus width Annulus 1.03 0.01 0.50 2.20 mm 1006
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ing on krill. The concomitant decline in δ13C values
could represent this shift to a new diet if fish were rel-
atively depleted in 13C compared to krill, but as the
opposite is true (Dunton 2001, Cherel et al. 2002,
Schmidt et al. 2003) this explanation seems unlikely.
The δ13C values of particulate organic carbon decrease
with increasing latitude (Goericke & Fry 1994), a

phenomenon also reflected in the isotopic values of
Antarctic krill (Schmidt et al. 2003); therefore, the
ontogenetic decline in δ13C values may reflect the
movement of males to more southerly foraging grounds
(Boyd et al. 1998). It is likely that these developmental
shifts in diet reflect the changing energetic needs and
foraging capabilities of male fur seals as they grow.
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Extrinsic effects

The computer program COFECHA is a widely used
dendrochronological tool that has been useful for
cross-dating other biological proxy series such as those
obtained from tree rings, mollusc shells and coral
skeletons. The series obtained from Antarctic fur seal
teeth, however, are much shorter than those commonly
used with this program (~7 yr compared to decades)
and this is probably the most limiting factor to its appli-
cation to tooth time series analysis. Any interpretation
of results based on time series that are re-evaluated
using COFECHA must consider the limitation of short
time series. We explored the use of this tool to improve
the dating of our chronology but did not find sufficient
evidence to warrant changing it. Such resources from
other disciplines could be useful to future studies of
this kind, however, and we recommend their consider-
ation.

The apparent changes in stable isotope composition
of teeth during the lifetimes of male Antarctic fur seals
discussed in the previous section have taken place
against a background of a temporal trend in trophic
level and carbon source. Male fur seals at South Geor-
gia have experienced a ~2‰ decline in dentin δ15N
values from 1964 to 2004, representing a substantial
drop in trophic level. This result is consistent with
Antarctic fur seals becoming more dependent on krill
in their diet in recent years. Similarly, a decline in δ13C
values, indicative of a more pelagic/offshore feeding
environment (Hobson et al. 1994, Cherel & Hobson
2007) supports this interpretation. It is possible that a
proportion of the annual decline in δ13C values could
be attributed to the Suess effect: the decline in oceanic
δ13C values of dissolved organic carbon due to anthro-
pogenic input of atmospheric CO2. However, this
decline has been estimated by McNeil et al. (2001) to
be 0.015 ± 0.003‰ yr–1 in the Sub-Antarctic Zone and

we observed a 0.068‰ yr–1 decline in
δ13C over the time period. The decline
in δ13C could also be related to large-
scale processes governing primary pro-
ductivity in the Southern Ocean. It is
possible that the trend in δ13C values of
Antarctic fur seal dentin reflects a
global decline in primary productivity
(Gregg et al. 2003), especially pro-
nounced in high latitudes, because of
the inverse relationship between algal
cell growth rates and δ13C (Hofmann
et al. 2000, Schell 2000).

The decline in both stable isotope
time series could be attributed to shifts
in diet of fur seals if fur seals are feed-
ing more exclusively on krill swarms

than in previous years. Myers & Worm (2003) reported
a substantial decline in worldwide predatory fish
stocks since the onset of commercial exploitation,
including an analysis of ~60 yr of trawl survey data
from South Georgia that contained information on
some fish species found in the diet of Antarctic fur
seals. Likewise, in their summary of fisheries activity
and policy in the Southern Ocean, Kock et al. (2007)
noted the over-fishing and subsequent collapse of
Notothenia rossi and other fish stocks in the 1970s.
N. rossi was reported as being common in the diet dur-
ing early analyses of Antarctic fur seal stomach con-
tents (Bonner 1968), but was almost absent from the
diet in more recent studies (e.g. Reid 1995). This histor-
ical loss of predatory fish in the Southern Ocean could
provide a partial explanation for the decrease in aver-
age trophic level as indicated by δ15N values. Indeed,
the abrupt change in the δ15N time series in the early
1970s coincides almost exactly with the period of
greatest catches of N. rossii around South Georgia
(Kock et al. 2007).

These isotopic trends have been accompanied by a
significant decline in annulus width, after accounting
for the ontogenetic changes, over the course of the
time series. This decline in annulus width could be
caused by a density-related response to an increasing
fur seal population in the region (Boyd & Roberts
1993). Assuming dentine deposition is indeed an accu-
rate recorder of animal growth, the very high numbers
of fur seals at South Georgia may cause competition
for food resources between males and a coincident
decline in annular growth of individuals. Also, increa-
sed competition may mean that a higher proportion of
smaller, weaker males have died and been collected at
the breeding beach in more recent years.

In addition to these long-term trends, there is evi-
dence that the diet of fur seals has varied on a much
shorter time scale. We sought to test for any functional
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links between fluctuations in physical indices known
to affect krill populations and the sub-decadal varia-
tion observed in the Antarctic fur seal teeth time series.
These indices represent only a small subset of potential
sources of extrinsic variation, but their impact on local
environmental conditions, and particularly on krill
stocks, is well documented. Relationships between
life-history variables in fur seals, some other predators
of krill and environmental variability have already
been suggested (Forcada et al. 2005, Nicol 2006,
Trathan et al. 2006).

A significant proportion of the oscillations in stable
carbon isotope values varied inversely with SST in the
region. Sea surface temperature could be driving
changes in the δ13C values measured in the dentin of
male Antarctic fur seals by (1) causing changes in the
annual availability or distribution of food sources —
mainly krill, (2) causing changes to the baseline δ13C
signature of phytoplankton or (3) causing males to
travel to more southerly regions when SST is high and
to more northerly regions when SST is low. While cli-
matic forcing of the abundance of Antarctic krill has
been suggested (Murphy et al. 2007), the process is not
instantaneous and lags behind SST anomalies by 2 yr.
Although errors in age estimation could cause im-
proper assignment to calendar years, our re-evaluation
of the altered time series (as suggested by the
COFECHA analysis) did not find a significant correla-
tion at a lag of 2 yr, indicating that changes in krill
abundance are not the functional link between our
δ13C series and SST. Second, if the δ13C signal present
in our time series was directly related to krill availabil-
ity, we would expect this signal also to be present in
the δ15N series as, presumably, males would need to
supplement their diets in these years with increased
piscivory. Alternatively, SST could be influencing fur
seal δ13C values by affecting inter-annual variability in
δ13C values of phytoplankton. Popp et al. (1999) found
that the decline in 13C with latitude in Southern Ocean
suspended particulate organic matter was at least par-
tially driven by changes in algal assemblages and cell
growth rates, and the availability of dissolved CO2 in
the oceans is considered to be a driver of variation in
δ13CPOC (Goericke & Fry 1994, Burkhardt et al. 1999,
Popp et al. 1999). Goericke & Fry (1994) showed that
CO2(aq) varies inversely with temperature in the
global oceans. If these latitudinal differences are partly
driven by temperature, then inter-annual changes in
SST may also change community structure and growth
rates of marine algae between years and provide a
link between the δ13C signal present in Antarctic fur
seal dentin time series and SST. However, we are not
aware of any long-term inter-annual monitoring of
δ13C values of particulate organic matter in the South-
ern Ocean with which to test the above conjecture.

Likewise, there is insufficient data on the distribution
of male fur seals outside the breeding season to discard
the third hypothesis that inter-annual changes in SST
could cause males to travel to widely different foraging
locations (and hence δ13C values), perhaps across the
Antarctic Polar Front.

In the present study we have shown that the annular
deposition of dentin layers in the teeth of pinnipeds
can document patterns of ontogenetic and temporal
shifts in the availability of stable nitrogen and carbon
isotopes. A complex set of intrinsic and extrinsic factors
affecting diet will mainly account for this variation in
stable isotope composition. Attempting to separate
these factors is a necessary first step before identifica-
tion of potentially important links between diet and
environmental conditions. The present study has
shown that historical patterns of stable isotope deposi-
tion in the teeth of male Antarctic fur seals can provide
a measure of long- and short-term environmental vari-
ability as seen from a top-down ecological perspective.
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