INTERACTIONS BETWEEN DUGONGS AND SEAGRASSES IN A SUBTROPICAL ENVIRONMENT

by
Anthony Robert PREEN BSc (Hons) (JCUNQ)

Thesis submitted for the degree of Doctor of Philosophy

Department of Zoology

James Cook University of North Queensland

July, 1992

Statement of access to thesis

I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other photographic means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following-statement:

"In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author; and to make proper written **acknowledgment** for any assistance which I have obtained from it."

Beyond this, I do not wish to place any restriction on access to this thesis.

Anthony Preen

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Anthony Preen

THE CONTENTS OF THIS PAGE HAVE BEEN REMOVED DUE TO COPYRIGHT RESTRICTIONS

Dedication

to

Pam Preen
John Warlters
Margaret Thorsborne
Arthur Thorsborne

ABSTRACT

This study investigated the ecology of dugongs in Moreton Bay, a 1400 km² embayment in sub-tropical south-east Queensland (27.5° S, 153.3° E). The dugongs' distribution, movements, home range, habitat selection, feeding, diet and food preferences were examined in relation to the **seagrass** and physical resources. I considered the ways in which dugongs affect the seagrasses and the significance of the dugongs' role in the **seagrass** system.

Seagrasses were quantitatively mapped in two study areas, encompassing 133 km² of seagrass. Seven species of **seagrass** formed 15 **recognised** communities, which collapsed into five community-groups. Communities dominated by species of **Halophila** were the most widespread, covering 51% of the total **area** of seagrass, but they were **characterised** by low biomass, and accounted for only 9% of the total standing crop of **seagrass** (total = 12,808 tonnes dry weight). In comparison, communities dominated by **Zostera capricorni** (broad-leaf morph) occupied only 38% of the area of seagrass, but contained 75% of the **seagrass** standing crop.

The annual, **above-ground** production of **seagrass** within the study areas was estimated to be 41,728 tonnes dry weight. <u>Zostera capricorni</u>, the dominant species in terms of biomass (57.5% of total above-ground standing crop), accounted for 34% of the total, while the species of <u>Halophila</u> accounted for 36.6%, despite representing only 20.5% of above-ground standing crop.

The distinct seasonality of **Moreton** Bay was highly correlated with pronounced changes in **seagrass** abundance. There was a distinct **summer/autumn peak** in the abundance of most species. Zostera capricorni alone had a **winter/spring** growth period. Averaged across all species, shoot density, above-ground and belowground biomass changed by factors of 1.9, 2.3 and 2.3, respectively, between seasons of minimum and maximum abundance.

Based on 28 aerial surveys, I estimate a **Moreton** Bay population of 600 dugongs. During spring and summer the dugongs were relatively sedentary, however, during winter the dugongs undertook regular migrations between the feeding areas inside the Bay and the oceanic waters east of the Bay (15-40 km round-trip). By riding the flood and ebb tides in and out of the Bay, the dugongs could exploit the temperature differential of up to 5" C between areas. Sometimes they spent as little as 1.5 hr, during the top of the tide, feeding in the Bay. Some dugongs stayed in the warm water outside the Bay for days at a time in winter.

Thirteen dugongs occupied an average range of 64 km² during the periods they were satellite-tracked (mean = 50 days). Within their home range, some dugongs sequentially used distinct sub-ranges, in which they concentrated their activities for periods of up to 35 days.

Some areas were rarely, if ever used by dugongs, while other areas were

persistently used. The dugongs favoured areas of low biomass, **dominated** by <u>Halophila</u> species. Almost all of the avoided areas were dominated by <u>Z. capricorni</u>. Of the 8,504 dugongs sighted on seagrass during aerial surveys, 76% were in areas dominated by <u>Halophila</u>. Likewise, 75% of locations from tracked dugongs, that were from seagrass habitats (n = 773), were from <u>Halophila</u> dominated areas. Dugongs feeding in areas dominated by <u>Z. capricorni</u> broad frequently grazed selectively, avoiding patches of <u>Z. capricorni</u>. Excluding the contribution of <u>Z. capricorni</u> broad, the mean biomass where dugongs were sighted and where tracking fixes occurred was 21.2 g DW/m² and 15.3 g DW/m², respectively. In comparison, communities dominated by <u>Z. capricorni</u> broad typically contained 100-200 g seagrass/m².

Based on the nutritional composition of the dugongs' preferred species (<u>H. ovalis</u> $\geq \underline{H}$, <u>uninervis</u> thin $> \underline{H}$, <u>spinulosa</u> $\geq \underline{S}$, <u>isoetifolium</u> $> \underline{Z}$, <u>capricorni</u> broad), it is apparent that they select primarily on the basis of high nitrogen and low fibre content. They may also select for high soluble carbohydrate content during spring, when they fed on fruiting \underline{Z} , <u>capricorni</u> (thin-leaf morph).

Most feeding sites were in water 1.5-2.5 m deep at the time of feeding. The dugongs did not select feeding sites on the basis of sediment compaction nor mean grain size, however, they tended to avoid areas containing a high level of shell in surface sediments. In such places the dugongs adjusted their feeding technique to minimise the amount of sediment processed, by cropping primarily the leaves. This so-called **surface** grazing was also employed when the rhizome mat (usually of **Z**. capricorni) was particularly dense. Usually, however, the dugongs **furrow** grazed, removing shoots, rhizomes and roots.

Grazing dugongs removed 85.6% of shoots, 90.8% of above-ground biomass, 58.5% of rhizome biomass and 25.1% of root biomass from along feeding trails. Total biomass (above- plus below-ground) was reduced by 53.1% along feeding trails, or 65.2% excluding sites dominated by <u>Z.</u> capricorni.

Due to the differential digestion of **seagrass** species, the analysis of faecal samples revealed little about the dugongs' **seagrass** diet. However, it confirmed that algae are not normally eaten in significant amounts. Other evidence suggested that dugongs may actively avoid some algae (<u>Caulerpa</u> species, and some epiphytic species).

The faecal analysis revealed that ascidians are a significant component of the diet of dugongs in **Moreton** Bay. The stalks of the small colonial ascidian <u>S. pulchra</u> occurred in 69% of samples and comprised 29% of their wet weight (excluding material that passed through a 500 μ m sieve). Mantles of solitary ascidians were found in 27% of samples and made up 20% of their bulk. Overall, ascidians were in 73% of samples and comprised 26% of the bulk of all samples. Comparable values for samples **analysed** from dugongs from tropical Australasia were 6.2% occurrence and 0.04% abundance. At least one dugong from **Moreton** Bay also fed on a colonial polychaete. There is little doubt that the dugongs fed selectively on the ascidians and polychaetes.

Dugongs in **Moreton** Bay often graze in large herds. Half the dugongs seen during aerial surveys were in herds of 140 or more. Grazing can reduce the abundance of **seagrass** by as much as 95% over large areas (40-75 ha). However, small tufts of **seagrass** remain as an **ungrazable** reserve (110-120 shoots/m² in a **H. ovalis** meadow), and recovery is rapid once all grazing ceases. In this regard the disturbance to **seagrass** meadows caused by grazing dugongs differs to that caused by sedimentation, water scour, disease or other die-offs.

Intensive grazing by large herds of dugongs *can* have significant effects on **seagrass** meadows. This so-called **'cultivation' grazing** *can* alter the species composition, age structure and nutrient status of **seagrass** meadows. Relatively high biomass, mid-seral stage communities *can* be converted to ones of low-biomass and early **seral** stage. <u>H. ovalis</u> is advantaged at the expense of <u>Z. capricorni</u> broad. This change of species results in a meadow-wide increase in nitrogen concentration and decrease in fibre levels.

Dugongs in **Moreton** Bay probably suffer particular nutritional stresses, especially during winter, due to (1) the limitation of nitrogen availability, due to seasonally low levels of nitrogen content and **seagrass** abundance and (2) the effect of cold water temperatures. They counter these winter stresses by (1) regularly migrating to an oceanic **area** outside the Bay and (2) by maximising the quality of their diet by (a) selectively feeding in communities and patches of favoured, nutritionally superior **seagrasses**, (b) by feeding on invertebrates and (c) by 'cultivation' grazing.

By concentrating their grazing in favoured regions, dugongs may alter the composition of **seagrass** communities over large areas (several **km²**). Grazing by dugongs is likely to be responsible for some of the spatial heterogeneity of **seagrass** communities on the eastern banks in **Moreton** Bay.

In favoured areas, dugongs may consume on the order of 28% of the **total** seagrass production. This compares with consumption levels of <3-10% of above-ground production only by other grazers (invertebrates, fish, waterbirds; excluding atypical populations of urchins). Previously, little attention has been paid to the role of large herbivores, such as sirenians and green turtles, in the energy flow through seagrass systems. Consequently, our understanding of the functioning of these systems has been based on the assumption that large herbivores do not consume a significant proportion of production, and therefore, do not play a major role in the ecology of the systems. As a result of this study, I question that assumption.

TABLE OF CONTENTS

DECLAR	RATION									•				•					· i
	TION																		
DEDICA	TION · · · · ·				• •		٠.	٠.		•		•		•	•		•	•	111
ABSTR	ACT								•							•			iv
TABLEC	FCONTENT	S															•		vii
	TABLES																		
LIST OF	FIGURES					٠.	٠.		•	• •		•		•	•	•		2	xviii
ACKNOV	WLEDGMENT	S															•		xxii
СНАРТ	ER 1.																		
	RAL INTRO																		
	1. Introduction																		
1.	2. Background																		
	1.2.1. Th																		
	1.2.2. Sea																		
4	3. Thesis outling	ne				٠.			•			•			•	•		•	. 13
1.			P	AR	T	1.													
1.	THE D	UGO						R(ON	JN	/ []	Ξľ	V.	Γ					
СНАРТ		UGO						R(ON	IN	⁄ 1	Ξľ	V.	Γ					
СНАРІ	TER 2.)N(GS'	E	N	VΙ												. 15
CHAPI PHYSIO	ER 2. OGRAPHY)N(GS'	E	N '	VI												
CHAPI PHYSIO 2.	TER 2.	of the)N(study	GS' y are	E as .	N'	VI												. 15
CHAPI PHYSIO 2.	TER 2. OGRAPHY 1. Description	of the)N(study	GS'	E as .		VI												. 15 . 16
CHAPI PHYSIO 2.	ER 2. OGRAPHY 1. Description 2. Climate .	of the)N(study	GS' y are	E as .	 	VI									•		•	. 15 . 16 . 16
CHAPI PHYSIO 2.	TER 2. OGRAPHY 1. Description 2. Climate . 2.2.1. Int	of the roduction)N(study	GS'	E as .	 	ν Ι								•	•	•		. 15 . 16 . 16 . 18
CHAPI PHYSIO 2.	TER 2. OGRAPHY 1. Description 2. Climate . 2.2.1. Int 2.2.2. M	of the coduction lethods sults)N(study	GS'	as .	 	· · · · · · · · · · · · · · · · · · ·									 	•		. 15 . 16 . 16 . 18 . 19
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate . 2.2.1. Int 2.2.2. M 2.2.3. Re	of the roduction lethods sults	study	GS'	E as .	 													. 15 . 16 . 16 . 18 . 19 . 22
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate . 2.2.1. Int 2.2.2. M 2.2.3. Re 2.2.4. Dis	of the roduction lethods sults	study	y are	E as	 	···						• • • • • • • • • • • • • • • • • • • •						. 15 . 16 . 16 . 18 . 19 . 22
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate . 2.2.1. Int 2.2.2. M 2.2.3. Re 2.2.4. Dis 3. Sediments 2.3.1. Int 2.3.2. Me	of the roduction of the sults sults consion roduction of the sults consider the sults of the sul	study	y are	E as		· · · · · · · · · · · · · · · · · · ·												. 15 . 16 . 16 . 18 . 19 . 22 . 23 . 23
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate .	of the roduction lethods sults scussion roduction ethods sults	study	gs'	E aas														. 15 . 16 . 18 . 19 . 22 . 23 . 23 . 25
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate . 2.2.1. Int 2.2.2. M 2.2.3. Re 2.2.4. Dis 3. Sediments 2.3.1. Int 2.3.2. Me 2.3.3. Re 2.3.4. Dis	of the roduction sults scussion roduction ethods sults sults scussion	study	y are	E as .		···												. 15 . 16 . 18 . 19 . 22 . 23 . 23 . 25 . 27
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate .	of the roduction sults scussion roduction ethods sults sults	study	y are	E as		VI												. 15 . 16 . 18 . 19 . 22 . 23 . 23 . 25 . 27
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate .	of the roduction lethods sults roduction ethods sults scussion roduction sults roduction	study	y are	E as		VI												. 15 . 16 . 18 . 19 . 22 . 23 . 23 . 25 . 27 . 28
CHAPI PHYSIC 2. 2.	TER 2. OGRAPHY 1. Description 2. Climate .	of the roduction sults roduction sults scussion roduction roduction	study	y are	E as .		VI												. 15 . 16 . 18 . 19 . 22 . 23 . 23 . 25 . 27 . 28 . 29

	TT A T	KJ.	EDNO IN THE CEACD ACCEC
SPA.			ERNS IN THE SEAGRASSES40
			ion
	3.2.		40
			Aerial photography
		3.2.2.	Sampling design
		3.2.3.	Sampling
			Number of species and morphs of seagrass
		3.2.5.	Data analysis
			Seagrass maps
	2.2		Data storage
	3.3.		
			Seagrass communities
			Area
			Standing crop
	3 /		on
	3.4.		Area, community structure, standing crop and
		3.4.1.	distribution of seagrasses
		3 4 2	Factors determining the distribution of communities 52
		3.7.2.	1 actors determining the distribution of communities 1.1. 32
CHA	рть	'R 1	
_		-	TTERNS IN THE SEAGRASSES 71
I ILIV.	цv.		
	4.1.	Introduct	ion
	4.1.	Introduct Methods	ion
	4.1.	Introduct Methods 4.2.1.	ion
	4.1.	Introduct Methods 4.2.1. 4.2.2.	Sample collection 72 Treatment of samples 72
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3.	Sample collection
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results	Sample collection
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1.	Sample collection
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2.	Sample collection
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3.	Sample collection 72 Treatment of samples 72 Correlations with climatic variables 74
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3.	Sample collection
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4.	Sample collection
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5.	Sample collection 71 Sample collection 72 Treatment of samples 72 Correlations with climatic variables 74 75 Disturbances 75 Seagrass abundance 76 Seagrass shoot length 78 Above-ground biomass as a proportion of total biomass 75 The seasonal growth of each species 75
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6.	Sample collection 71 Sample collection 72 Treatment of samples 72 Correlations with climatic variables 74 Disturbances 75 Seagrass abundance 76 Seagrass shoot length 78 Above-ground biomass as a proportion of total biomass 78 The seasonal growth of each species 79 Dead rhizome 81
	4.1. 4.2.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7.	Sample collection 71 Sample collection 72 Treatment of samples 72 Correlations with climatic variables 74 Disturbances 75 Seagrass abundance 76 Seagrass shoot length 78 Above-ground biomass as a proportion of total biomass 78 The seasonal growth of each species 79 Dead rhizome 81 Algae 82
	4.1. 4.2. 4.3.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8.	Sample collection
	4.1. 4.2. 4.3.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8. Discussion	Sample collection
	4.1. 4.2. 4.3.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8. Discussion 4.4.1.	Sample collection 71 Sample collection 72 Treatment of samples 72 Correlations with climatic variables 74 Disturbances 75 Seagrass abundance 76 Seagrass shoot length 78 Above-ground biomass as a proportion of total biomass 75 The seasonal growth of each species 75 Dead rhizome 81 Algae 82 Climatic correlates of seagrass abundance 83 Seagrass 83
	4.1. 4.2. 4.3.	Introduct Methods 4.2.1. 4.2.2. 4.2.3. Results 4.3.1. 4.3.2. 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8. Discussio 4.4.1. 4.4.2.	Sample collection

PART 2. BIOLOGY OF DUGONGS IN RELATION TO THEIR ENVIRONMENT

CHAPTER 5.	
USE OF SPACE	08
5.1. Introduction	
5.2. Aerial surveys · · · · · · · · · · · · · · · · · · ·	
5.2.1. Methods	
5.2.2. Results	15
5.3. Satellite tracking	
5.3.1. Methods	
5.3.2. Results	27
5.4. Discussion	
5.4.1. Size and dispersion of the dugong population 13	37
5.4.2. Movements	38
5.4.3. Home range	43
5.4.4. Distribution of dugongs in relation to seagrass	
communities and biomass	
5.4.5. Habitat selection	48
5.4.6. Boats and dugongs 14	49
5.4.7. Dietary preferences	51
CHAPTER 6.	
FEEDING ECOLOGY	74
6.1. Introduction	74
6.2. Characteristics of feeding sites 1	75
6.2.1. Methods 1	
6.2.2. Results 1'	78
6.3. Methods of foraging	80
6.3.1. Methods	80
6.3.2. Results	82
6.4. Diet and food preferences	85
6.4.1. Analysis of faecal samples	
6.4.2. Analysis of stomach samples	90
6.4.3. Incidence of invertebrates in the diets of tropical	
dugongs	91
6.4.4. Species of seagrass present where dugongs were	
	92
\mathcal{E}	93
	95
<u> </u>	97
	98
\mathcal{E}	99
1	02
6.6. Discussion 20	08

6.6.1. Where and how dugongs feed	08
6.6.2. Diet	
6.6.3. Causes and consequences of foraging strategies 2	26
CHAPTER 7.	
HERDING	67
7.1. Introduction	
7.2. Methods	
7.3. Results	
7.3.1. Herd size	
7.3.2. Proportion of calves	
7.4. Discussion	
7.4.1. Herds: feeding assemblages or social groups? 2	71
7.4.2. Stability of herds	
7.4.3. Calves and herds	
7.4.4. Herd size in dugongs	74
7.4.5. Why does the herding behaviour of dugongs in	.==
Moreton Bay differ from other areas? 2	77
CHAPTER 8.	
ECOLOGICAL SIGNIFICANCE OF LARGE GRAZERS	
	005
IN THE SEAGRASS SYSTEM	
8.1. Grazing as a landscape process	
8.2. Grazing and energy flow in seagrass systems	303
0.5. Competition between augungs and green turties	705
CHAPTER 9.	
SUMMARY AND RECOMMENDATIONS 3	308
9.1. Summary	
9.2. Conservation implications	
	318
BIBLIOGRAPHY 3	321
APPENDIX 1	
LOCATION OF SITES SAMPLED FOR SEAGRASS MAPPING IN THE (A)	
WEST AND (B) EAST STUDY AREAS IN MORETON BAY 3	
WEST THIS (b) EXIST STODT THEM SIN MORETON BITT	,54
APPENDIX 2	
ALTERNATIVE METHOD OF ESTIMATING THE STANDING CROP (ANI	D
ASSOCIATED STANDARD ERROR) OF SEAGRASS IN COMMUNITIES IN	
ГНЕSTUDYAREAS	354
APPENDIX 3	
RELATIONSHIP BETWEEN WET WEIGHT AND DRY WEIGHT OF	
COMMON SEAGRASSES IN MORETON BAY	356
COMMICS SAME GRANDO IN MICHAEL CIT DITT	

APPENDIX 4
ANALYSIS OF AERIAL SURVEY AND SATELLITE TRACKING DATA 357
APPENDIX 5
THE DISTRIBUTION AND ABUNDANCE OF BOATS IN THE STUDY
AREAS AND THE RESPONSE OF DUGONGS TO SPEED BOATS 366
APPENDIX 6
FACTORS RELEVANT TO THE DETERMINATION OF THE HOME RANGE
OF DUGONGS TRACKED IN MORETON BAY
APPENDIX 7
ESTIMATION OF THE DAILY CONSUMPTION OF SEAGRASS BY
DUGONGS AND THE AREA OF SEAGRASS DISTURBED BY DUGONGS386
APPENDIX 8
PROPORTION OF SEAGRASS PRODUCTION CONSUMED BY DUGONGS
ONTHETURTLEBANK 390

LIST OF TABLES

Table 3.1. Frequency of occurrence (%) of each species/morph of seagrass
at 512 sites, the number of sites at which each species was
recorded by each sampling method and by both sampling methods
(n), and results of correlations between the semi-quantitative
assessment of seagrass abundance and (1) the density of shoots and
(2) the biomass of above-ground material $(\log_{10}(n+1))$
Table 3.2. The median abundance of each species/morph of seagrass in the
15 communities. The 15 communities collapse into 5 community-
groups: C (<u>C. serrulata</u>), S (<u>S. isoetifolium</u>), ZB (dominated by <u>Z.</u>
capricorni broad), H (dominated by <u>Halophila</u> species) and ZT
(dominated by Z. capricorni thin). Abundance was scored on a 5
point, approximately logarithmic scale: $0 = absent$; $1 = very$
sparse; $2 = \text{sparse}$; $3 = \text{medium}$; $4 = \text{dense}$. For clarity, zero
scores have been replaced by periods
Table 3.3. Species composition, biomass, standing crop and area covered
by the 15 community types in the study areas
Table 3.4. Standing crop and area covered by the five community-groups
in the study areas
Table 3.5. Standing crop (and standard error of estimate) of each
species/morph of seagrass in the East and West study areas of
Moreton Bay
Table 3.6. Mean, standard error (SE) and range of depths of each
community and community-group in the East and West study areas.
Results of one-way analyses of variance testing for a difference in
the mean depth of communities in each study area are also
presented. Depths are relative to Port Datum
Table 3.7. Comparison of the seagrass communities identified in Moreton
Bay by Young and Kirkman (1975) and Poiner (1984a) with the
communities recognised in this study 61
Table 3.8. Seagrass biomass values for a selection of species from a
variety of locations in Australia and other areas. Biomass is dry
weight g/m ² , except where stated. Bracketed numbers represent
standard errors
Table 4.1. Characteristics of the 10 sites used to monitor temporal changes
in the abundance of seagrasses in the Moreton Bay study areas and
months of sampling at each site (*). 'D' indicates the approximate
time of disturbance (see text)
Table 4.3. Results of analyses of variance testing for the effect of season,
site and species on the abundance of seagrass in Moreton Bay. The
degrees of freedom reflect the unbalanced design
Table 4.4. Factors by which mean seagrass abundance changed between
seasons of minimum and maximum abundance at nine sites in
Moreton Bay
Table 4.5. Result of analysis of variance testing for differences in shoot
length between seasons, sites and seagrass species in Moreton Bay.
The degrees of freedom reflect the unbalanced design 95

Table 4.6. Result of analysis of variance testing for the effect of season,
site and species on the proportion of above-ground biomass to total
biomass in seagrasses in Moreton Bay. Data from site W2 are not
included. Data were arcsine transformed. The degrees of freedom
reflect the unbalanced design
Table 4.7. Results of analyses of variance testing for the effect of season
and site on the abundance of dead rhizome in seagrasses in
Moreton Bay. The degrees of freedom reflect the unbalanced
design
Table 4.8. Results of analyses of variance testing for the effect of year and
season on the abundance of algae on Moreton Bay seagrass beds.
The degrees of freedom reflect the unbalanced design 96
Table 4.9. Results of analyses of variance testing for the effect of
sampling period and site on the abundance of algae in Moreton Bay
seagrass beds. The degrees of freedom reflect the unbalanced
design
Table 4.10. Parametric correlations (r) between three measures of seagrass
abundance (shoot density and above- and below-ground biomass)
and climatic variables. Due to differences in seagrass abundance
between sites, each site was analysed separately. See text for an
explanation of climatic variables. Mean values refer to preceding
three months. All correlations were highly significant ($p < 0.0001$). 98
Table 4.11. Measures of above-ground productivity of selected seagrasses,
ordered by latitude of study. Specific Growth Rate (SGR) is the
ratio of production to biomass. See text for further definition of
terms. All measures were derived by marking techniques. Data
published as g C were converted to g dw by multiplying by 2.778.
Data presented as ash-free dw were multiplied by 1.389 (see
Hillman et al., 1989 and Kirkman and Reid, 1979). A range of
values indicates multiple sites
Table 4.12. Estimates of the net above-ground primary production of each
species of seagrass in the East and West study areas of Moreton
Bay. Annual production is based on the summer standing crops.
Values of Specific Growth Rate (SRG) and standing crop come
from Tables 4.11 and 3.5 respectively. The mid-point was used
when a range of SGRs were available for a species. The SRG of <u>H.</u>
spinulosa has been guessed (see text). Different morphs of the same
species have been pooled
Table 5.1. Details of the 'standard' aerial surveys of the study areas in
Moreton Bay
Table 5.2. Result of analysis of variance testing for year and seasonal
differences in the number of dugongs counted during 'standard'
aerial surveys of the study areas in Moreton Bay
Table 5.3. Results of previous aerial surveys of Moreton Bay, as well as
surveys from this study, demonstrating the relative importance of
the habitats in the East study area for dugongs in Moreton Bay 153

Table 5.4. Evidence of feeding site fidelity. Examples of dugong herds
feeding in the same location for extended periods. All sightings
were made around high tide, when there was sufficient water on
the banks (>1.5 m) for the dugongs to be present. Sightings from
the air were made during 'standard' aerial surveys and the locations
of the herds are plotted in Figure 5.1b. Each Case refers to a
separate feeding site
Table 5.5. Details of 13 dugongs tracked by satellite telemetry in Moreton
B a y
Table 5.6. Average areas of the home ranges ¹ of 13 dugongs tracked in
Moreton Bay, calculated for each sex, age class, season and for all
animals
Table 5.7. Results of analysis of variance testing the effect of home-range
isopleth, dugong sex and dugong age on the home range of 13
dugongs in Moreton Bay
Table 5.8. Details of 5 dugongs tracked by satellite telemetry in north
Queensland. Further details are presented in Marsh and Rathbun
(1990)
Table 5.9. Percentage overlap of home ranges of 13 dugongs tracked in
Moreton Bay. Home range areas are based on the densest 95% and
50% of fixes, corresponding to the home range boundary and the
area of concentrated use
Table 5.10. Pattern of range use exhibited by selected dugongs tracked in
Moreton Bay. Dugongs 136, 139 and 236 sequentially utilised a
series of sub-ranges, which are numbered by order of use. For
comparison, the range of dugong 235 is divided into four periods
comprising equal numbers of sequential locations
Table 6.1. Summary details of dugong feeding sites studied in Moreton
Bay. Seagrasses present (ordered by decreasing relative abundance
at each site), approximate number of dugongs recently seen in the
area, and the parameters measured are presented for each site. 'Y'
indicates that the parameter was measured
Table 6.2a. Abundance of seagrasses at the subset of dugong feeding sites
at which overall percentage cover and relative abundance of each
species were measured
Table 6.2b. Abundance of seagrasses and the ascidian <u>Svcozoa pulchra</u> at
the subset of dugong feeding sites at which shoot (and stalk)
density was measured in the field and in the laboratory
Table 6.2c. Abundance of seagrasses at the subset of dugong feeding sites
at which above- and below-ground biomass were measured 244
Table 6.3. The proportion of seagrass shoots counted in the field as a
percentage of those counted in the same samples in the laboratory 245
Table 6.4. Results of analyses of variance testing for differences in the
mean abundance of seagrass in quadrats along, and adjacent to,
feeding trails at 12 sites. Data were square root transformed 246
Table 6.5. Percentage of different parts of different species of seagrass
(and <u>Sycozoa pulchra</u>) removed by dugong from feeding trails.
Only data from sites where the particular species were dominant or
co-dominant are presented

Table 6.6. Variation among sites in the proportion of shoots, rhizomes and	
roots of Z. capricorni removed along surface and furrow-grazed	
feeding trails.	247
Table 6.7. Result of analysis of variance testing for a difference between	
methods of estimating the abundance of material on microscope	
slides of dugong faeces. Twenty-one faecal samples were assessed	
by both methods	248
Table 6.8. Occurrence (percentage of samples containing item) and	240
abundance (mean percentage of each sample composed of item) of	
material in 48 faecal samples collected from dugongs in Moreton	240
Bay	248
Table 6.9. Results of analyses of variance testing for temporal differences	
in the abundance of dietary items in 48 faecal samples from	240
dugongs from in Moreton Bay.	249
Table 6.10. Stomach contents of three dugongs from Moreton Bay.	249
Table 6.11. Occurrence (percentage of samples containing the item) and	
abundance (mean percentage of each sample composed of item) of	
non-seagrass material in 33 stomach and 15 rectal samples from	
north Queensland and Papua New Guinea. Microscopic and	
parasitic invertebrates were not considered	250
Table 6.12. Species of seagrasses, and the relative abundance of seagrass,	
recorded at locations where 115 herds were encountered on	
vegetated areas of the East study area in Moreton Bay	250
Table 6.13. Frequency and relative frequency of seagrasses along feeding	
trails, contrasted with their relative frequencies at the feeding sites,	
and the results of Chi square goodness of fit tests comparing the	
frequency distributions. Also results of an analysis of variance	
testing for a difference between the density of <u>S. pulchra</u> colonies	
adjacent to feeding trails and generally at site 27	251
Table 6.14. Density of feeding trails (estimated by line transects) in areas	231
of dense Z. capricorni and in surrounding areas of seagrass at four	
feeding sites in the East study area	251
	231
Table 6.15. Biomass of seagrass in cores along three short transects	
straddling the boundary between an ungrazed Z. capricorni	
dominated seagrass patch within a grazed H. uninervis meadow.	
Cores were 20 cm apart. Core 1 was located in the Z . capricorni	2.52
patch, cores 2 and 3 in the <u>H. uninervis</u> .	252
Table 6.16. Abundance of reproductive shoots in intertidal areas of \underline{Z} .	
capricorni thin grazed by dugongs.	252
Table 6.17. Abundance of seagrass at feeding areas before and after they	
were intensively grazed by dugongs and the percentage of seagrass	
removed. Area 3 was grazed twice during the monitoring period.	
3-1 and 3-2 refer to the first and second grazing of Area 3	253
Table 6.18. Results of analysis of variance of the of the exclosure	
experiment which examined the response of shoot density (log,,	
(shoot density + 1) of three species of seagrass under three	
regimes of simulated grazing by dugongs	254
Table 6.19. Reduction in shoot density (%) of each species of seagrass	
resulting from simulated grazing at two intensities	255

Table 6.20. Incidence of macro-invertebrates in the diet of dugongs.	
Studies which recorded the absence of invertebrates, or did not	
refer to their presence have been included only if at least 15	
samples were analysed	
Table 7.1. Results of analyses of variance testing for yearly and seasonal	
differences in the 'typical' herd size and mean herd size of dugongs	
recorded during 28 aerial surveys of the East and West study areas	
in Moreton Bay.	
Table 7.2. Result of analysis of variance testing for yearly and seasonal differences in the proportion of calves in dugong herds counted	
during standard aerial surveys of the East and West study areas in	
Moreton Bay. Proportions were arcsine transformed	
Table 7.3. Results of analyses of variance comparing the proportion of	
calves, 'typical' herd size and mean herd size in different years and	
in two different periods relative to the period of calving. Calf	
proportions were arcsine transformed	
Table 7.4. Proportion of calves recorded during selected dugong surveys.	
Data is ordered by latitude within ranges of survey altitude. A	
range of values indicates results from different areas. All locations	
are in Australia, except the Arabian Gulf, eastern Red Sea and	
Manus (Papua New Guinea).	
Table 7.5. Information on the size of dugong herds. Data has been	
extracted from aerial survey reports that recorded a total of at least	
30 sighted dugongs. Data are arranged by decreasing latitude	
within each of two survey types. Shoreline surveys are typically flown at an altitude of 274-300 m and transect width is not	
restricted. Line-transect surveys are usually flown at an altitude of	
137-152 m and have a fixed transect width. A range of values	
indicates results from different areas or survey blocks. Some data	
were not available (NA) . All locations are in Australia, except the	
Arabian Gulf, eastern Red Sea and Manus (Papua New Guinea)	290
Table 8.1. Dugong grazing pressure, area of seagrass disturbed and	
turnover rate of seagrass resulting from grazing in four regions of	
the seagrass banks in the East study area in Moreton Bay	305
Table A.2.1. Species composition, biomass, standing crop and area	
covered by the 15 community types in the study areas	355
Table A.4.1. Analysis of deviance for final hierarchal log-linear models	
assessing the effects of habitat (see section 5.2.1.5), season	
(winter, spring summer), distance to deep water ($\langle \text{ or } \geq 1.5 \text{ km} \rangle$,	262
depth ($<$ or ≥ 0 m relative to Datum) and abundance of dugongs Table A.4.2. Analysis of deviance for final hierarchal logistic regression	363
models assessing the effects of habitat (1-8; see section 5.2.1.5),	
season (winter, spring, summer), distance ($<$ or ≥ 1.5 km), and	
temperature (\leq or $>19^{\circ}$ C) on the presence of a dugong in a grid	
cell	363
Table A.4.3. The estimated proportions (and the associated 95%	
confidence intervals) of relevant grids cells containing at least one	
dugong in each combination of habitat and season adjusted for the	
effect of the distance of the cell from deep water on dugong	
presence	364

Table A.4.4. The estimated proportions (and associated 95% confidence	
intervals) of grids cells in each habitat that contained dugongs	
(averaged over seasons, and adjusted for the effect of the distance	
of the cell from deep water and the effect of water temperature on	
dugong presence)	4
Table A.4.5. The estimated density of satellite tracking locations (km ⁻² ;	
plus 95% confidence intervals) in areas characterised by each	
combination of habitat (1-8) and seasons (winter, spring summer) 36	55
Table A.4.6. The estimated density of satellite tracking locations (km ⁻² ;	
plus 95% confidence intervals) in each habitat (1-8) averaged over	
seasons (winter, spring summer)	55
Table A.5.1. Result of analysis of variance testing the effect of boat type	
and season on the abundance of boats counted during standard	
aerial surveys of the East and West study areas in Moreton Bay 37	70
Table A.6.1. Results of analysis of variance testing for differences in the	
size of home ranges estimated from the dugong tracking data from	
Moreton Bay calculated using different home range models and	
different proportions of the total number of fixes (isopleths)	
received for each dugong	34
	-

LIST OF FIGURES

Figure	2.1. Location of the West and East study areas in Moreton Bay 31
_	2.2. The East study area in Moreton Bay. Place names referred to
	in text
Figure	2.3. Temporal variation in surface water temperatures from (A) the
	seagrass banks of the East study area: based on 213 thermometer
	measurements (mean and SE plotted) and (B) the seagrass banks in
	the East study area and the deep water areas immediately outside
	(east) of South Passage: derived from NOAA AVHRR satellite
	imagery. Graph (A) also shows the distribution of seasons, based
	on water temperatures
Figure	2.4. Air temperature (A), day length and cloud cover (B) and
	rainfall (C) recorded at Brisbane during the months of this study
.	and the comparative 42 year averages (1949-1990)
Figure	2.5. Spatial patterns of surface water temperature in the Moreton
	Bay region during winter. Note the plume of warm water entering
	the Bay through South Passage (between Moreton and North
	Stradbroke Islands). Pixels are 1 km ² . The satellite image was
Figuro	captured during a rising tide on 7 August 1988
riguie	sediments from the East $(n = 8)$ and West $(n = 2)$ study areas in
	Moreton Bay. $\dots 36$
Figure	2.7. Amount of shell and shell fragments (mean plus SE) in surface
Tiguic	sediments at 'random' sites in the East and West study areas. The
	amount of shell did not differ significantly among sites with the
	same capital letter. Multiple comparisons were based on the Least
	Significant Difference
Figure	2.8. Penetrometer readings (mean plus SE) at 'random' sites in the
8	East and West study areas. Depth of penetration did not differ
	significantly among sites with the same capital letter. Multiple
	comparisons were based on the Least Significant Difference 37
Figure	2.9. Bathymetry of the (A) West and (B) East study areas in
	Moreton Bay. Depths are in metres, relative to Port Datum 38
Figure	3.1. The distribution of seagrass communities in (A) the West and
	(B) East study areas
Figure	3.2. The distribution of seagrass biomass (g/m²) in (A) the West
	and (B) East study areas
Figure	3.3. Estimated standing crop of each species/morph of seagrass in
	the East and West study areas
Figure	3.4. The importance of each seagrass community-group in terms of
	the percentage of the total area of seagrass (133 km²) and the
	percentage of the total standing crop of seagrass (12,808 t). (East
T: -	and West study areas combined)
rigure	3.5. Mean (plus SE) depth of seagrass communities in the East and
	West study areas. MLWN and MLWS indicate the mean water
	level, above Datum, during neap and spring low tides

Figure	3.6. Relationship between depth and seagrass biomass in the East	
	and West study areas in Moreton Bay. MSL: Mean sea level;	
Figure	MLWN: mean low water neaps; MLWS: Mean low water springs 4.1. Seasonal variation (mean and SE) in the above- and below-	70
1 iguic		101
	4.2. Seasonal variation (mean and SE) in (A) shoot density and (B)	101
	biomass (above-plus below-ground) of seagrasses at different sites	
	J	102
Figure	4.3. Seasonal variation (mean and SE) in the shoot lengths of	
	seagrasses at different sites in the East study area in Moreton Bay.	103
Figure	4.4. Seasonal variation (mean and SE) in above-ground biomass as	
	a proportion of total biomass in seagrasses in Moreton Bay	104
Figure	4.5. Relative contribution of the above- and below-ground	
Ü	components to the biomass of five species of seagrass in Moreton	
		105
Figure	4.6. Temporal change in the biomass (mean and SE) of (A)	
C	epiphytic and (B)macro-algae at different sites in the East Study	
		106
Figure	4.7. Limits of the eastern Australia distributions of seagrasses that	
1 180110		107
Figure	5.1. 'Standard' surveys of the East and West study areas in	10,
1 iguic	Moreton Bay. (A) Flight path. (B) Location of dugong groups	
	recorded on each survey. + indicates the surveys that included the	
	· · · · · · · · · · · · · · · · · · ·	159
Figure	5.2. Flight path of perimeter surveys of Moreton Bay and the	137
riguic	- · · · · · · · · · · · · · · · · · · ·	163
Figure		103
	5.3. The total number of dugongs recorded during each of the	
	'standard' aerial surveys of the Moreton Bay study areas. *	
	indicates surveys that did not search the area outside South	161
г.	Passage.	104
riguie	5.4. Number of dugongs counted outside Moreton Bay as a	
	proportion of the total count during 14 of 28 'standard' aerial	
	surveys. The actual number of dugongs seen is indicated on the to	
	of each bar. * indicates the 14 flights that did not survey the area	1 ~ ~
г.	J	165
Figure	5.5. Percentage of dugongs seen in each seagrass community	
	during 28 'standard' surveys of the East study area ($n = 8,504$	1
	\mathcal{O}	166
	5.6. Habitat preferences of dugongs observed during aerial surveys	
	in Moreton Bay. Estimated proportion (plus 95% confidence	
	interval) of grid cells in each habitat occupied by dugongs (A)	
	during each season (corrected for distance from deep water) and	
	(B) during all seasons (corrected for distance and water	
	temperature). Winter cold areas are $\leq 19^{\circ}$ C and winter warm areas	
		167
Figure	5.7. Home ranges of dugongs tracked in Moreton Bay. Isopleths	
	show the densest 50%, 75% and 95% of fixes based on the kernel	
	estimator.	168

Figure 5.8. Sub-ranges sequentially occupied by dugongs 136, 139 and 236, as well as home ranges calculated from four sequential series of locations from dugong 235. Dugong 235 did not occupy subranges during the period of tracking. Numbers indicate sequence of
use
allseasons
Figure 6.1. Frequency distribution of grain sizes (mean plus SE) in sediments from 8 'random' sites and 21 feeding sites in the East study area
Figure 6.2. Amount of shell and shell fragments (mean plus SE) in surface sediments at 'random' sites and at feeding sites in the study areas. The amount of shell did not differ significantly among sites with the same capital letter. Multiple comparisons were based on the
Least Significant Difference
comparisons were based on the Least Significant Difference 257 Figure 6.4. Mean (plus SE) abundance of seagrass measured along feeding trails and adjacent to feeding trails at 12 feeding sites. Values are square root transformed. Sites are ordered by decreasing shoot
biomass
samples from dugongs
of 41 ha
of <u>Halodule uninervis</u>
Figure 6.9. Design of exclosures and the set of seagrass treatments established at each of three sites. Treatments were usually several
metres apart

	6.11. Changes in shoot density (log,, (shot density+1) of three	
	species of seagrass under three treatment regimes. Critical LSD	265
	T T T T T T T T T T T T T T T T T T T	265
	6.12. Abundance (mean plus SE) of <u>H. ovalis</u> , <u>H. spinulosa</u> and <u>Z. capricorni</u> at site E5 over 21 months. This site was probably	
		266
	7.1. Relative frequency distribution of herd sizes of dugongs in the	200
	East and West study areas during different seasons and years	292
	7.2. Cumulative percentage of dugong herds in 26 size classes	
- 18011	(upper limit plotted) and the cumulative proportion of dugongs in	
	herds of different sizes. Data from 28 aerial surveys of the East	
		293
Figure	7.3. Total number of dugongs seen during each of 28 aerial	
	surveys of the study areas, and the maximum, 'typical' and mean	
	sizes of herds and the proportions of calves recorded	294
Figure	8.1. Mean depth (plus SE) at four regions in the East study area	
	that were grazed to different extents by dugongs (Turtle: very	
	regularly grazed to Dunwich: rarely grazed)	306
Figure	8.2. Relationships between turnover rate of seagrass due to dugong	
	grazing and total biomass (above- plus below-ground parts) of	206
г.	6	306
Figure	8.3. Relative abundance of seagrasses in four regions in the East	
	study area that were grazed to different extents by dugongs.	
	Regions are arranged by frequency of grazing, from very frequent (Turtle) to rare (Dunwich)	307
Figure	A.5.1. The number of boats recorded during each 'standard' aerial	507
1 iguic	survey of the East and West study areas	370
Figure	A.5.2. Relative abundance of boat types recorded during 'standard'	
\mathcal{C}	surveys of the East and West study areas	370
Figure	A.5.3. The seasonal distribution of boats recorded on the 'standard'	
•	aerial surveys of the East and West study areas	371
Figure	A.6.1. Effect of sample size (number of locations) on estimates of	
	the home range area of four dugongs	385

ACKNOWLEDGMENTS

The contribution of Helene Marsh, my principal supervisor, to this study and thesis is very gratefully acknowledged. Helene was generous with support, and despite her other commitments, was always available to provide good advice. I particularly appreciated the confidence she had in me, and her forbearance. Helene attracted the great majority of outside funding for this project, with which she was munificent.

Ian Poiner, my co-supervisor at the CSIRO Marine Laboratory at Cleveland, **Moreton** Bay, was very generous with funding, advice and logistic support. I sincerely appreciate his contribution.

I also wish to thank George Heinsohn, whose quiet support I have valued for many years.

Funding for this project is gratefully acknowledged from the following sources:

Australian Postgraduate Research Award to ARP Australian Research Council Grant to HM Queensland Department of Primary Industries Joint CSIRO/JCU Grant to IP, HM and ARP James Cook University URG and MRG grants Australian Geographic Society Consultancy funds to HM and ARP.

Several people provided crucial support to the project. I wish to thank Bill Dall, Officer in Charge of the CSIRO Cleveland Lab for allowing me to use the lab and its associated facilities for two years. Thanks also to Dawn Couchman, for being such a regular, competent and cheerful observer, and her supervisors in the Queensland Department of Primary Industries for allowing her to participate in the aerial surveys during working hours. When Dawn was unavailable, QDPI allowed Paul Luck to substitute for her.

At different times, many people provided assistance and company in the field. Foremost were Alison Osborne and Claire Peterken. Alison helped on virtually every weekend of our time in **Moreton** Bay, and Claire was available on almost a daily basis for extended periods.

Catching dugongs can be a difficult and dangerous operation, and I owe much to the people who helped. Peter Spencer and Keith Saalfeld deserve special thanks. They participated in each capture and shared the burdens of trepidation and frustration that go with the job. Other people who helped at various times were Shannon Bums, Peter Corkeron, Dawn Couchman, Mark Hillman, Gerry Little, Paul Luck, Helene Marsh, Geoff Moore, Alison Osborne, Jon Peters, John Reynolds, Rob Slade, Anne-Marie Watt and Brad Zellar.

Several people helped, at one time or another, with the never-ending sampling of sub-tidal **seagrasses**. I am particularly grateful to Peter Spencer, Keith Saalfeld, Claire **Peterken** and Alison Osborne. Sorting the **seagrass** samples was usually monotonous and wearisome, so I am indebted to those selfless soles who reduced

my workload. Alison Osborne and Claire **Peterken** were outstanding in this regard.

In addition to Dawn Couchman, the following people acted as left-hand observer during aerial surveys at one time or another: Paul Luck, Claire Peterken, Peter Spencer, Alison Osborne and Leah Dixon

Galen Rathbun and Jim Reid, from the US Fish and Wildlife Service, developed the tether and housing for the satellite transmitter and provided lots of bits and pieces, as required. Their efforts are acknowledged and appreciated.

The **ascidians** and polychaetes recovered from the faeces and stomachs of dugongs were identified by Peter Arnold and **Patrica Mather.** A **skill** much appreciated.

I am grateful to a number of people for statistical advice and comment. Glenn De'ath helped with the analysis of habitat selection and the exclosure experiment; Craig Mundy was a great help with the pattern analysis; Vicki Nelson and Natalie Moltschaniwskyj let me chew their ears occasionally; and Helene Marsh was always liberal with advice, and corrected me when I got it wrong.

Several people assisted with the production of this thesis. Ali Green helped me restructure the **methods/results** of Chapter 6 and provided useful comments on parts of Chapters 1, 8 and 9. Jane Mellors commented on Chapter 4. Ian Poiner provided comments on Chapter 3. Every chapter benefited from the critical reading of Helene Marsh. Vicki Nelson carefully read the penultimate draft. To all these people I offer my heartfelt thanks.

At a personal level I wish want to thank all my friends for their warmth and support. The Dead Climbers and the Sticky-bun Club (particularly Geoff, Vicki, Ali, Craig, Ann-Marie, Karen and Steph) made life in Townsville a lot of fun. Special acknowledgment goes to my office-mate during much of the analysis and write-up phase, Mrs Geoffrey Moore¹, for her tolerance, wackiness and occasional wisdom.

Finally, very special thanks to three people. Claire Peterken, for her help and good company. Ali Green for putting up with me during the worst of the write-up. Alison Osborne, for her help and support, and for making the **Moreton** Bay memories so special.

¹ formerly the bodacious Anne-Marie Watt