STUDIES OF PROTEIN COMPLEXES INVOLVED IN THE ADENYLYLATION CASCADE OF THE NITROGEN SIGNALLING PATHWAY IN Escherichia coli.

Thesis submitted by Paula Clancy BSc (JCU), MSc (JCU) in March 2004.

For the degree of Doctor of Philosophy in the Department of Biochemistry and Molecular Biology James Cook University of North Queensland. I dedicate this work to my father who was always very proud of his girls, and won't be here to see its completion.

DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

••••••

Paula Clancy

•••••

Mar 2004

STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and, by microfilm or other means, allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement:

In consulting with this thesis I agree not to copy or closely paraphrase it in whole or part without written consent of the author and to make proper written acknowledgement for any assistance, which I have obtained from it.

Beyond this, I do not wish to pace any restriction on access of this thesis.

••••••

Paula Clancy

Mar 2004

ABSTRACT

Adenylyl transferase (ATase), the *glnE* gene product from *Escherichia coli*, is a bifunctional enzyme that catalyses the opposing adenylylation and deadenylylation of glutamine synthetase (GS). The overall aim of this thesis was elucidation of the molecular mechanisms of the adenylylation cascade.

A new central domain has been identified using ATase truncation constructs in activity assays and solubility trials. This new regulatory domain is flanked by two flexible Q-linkers, Q1 and Q2. Thus the topology of ATase can be represented as N-Q1-R-Q2-C. The N domain was PII-UMP independent in *in vitro* deadenylylation assays, and had 1000 fold less activity then entire ATase, suggesting PII-UMP binding impacts on the conformation of the deadenylylation active site.

Monoclonal antibodies (mAbs) generated in this work against ATase were characterised using ATase mutants and the truncated proteins. Two mAbs, 5A7 (binds residues 502-548) and 39G11 (binds residues 466-501) both binding in the R domain, blocked the binding of PII, GlnK, PII-UMP and GlnK-UMP to ATase. This is the first report that pinpoints the effector-protein binding sites to within the R domain of ATase.

Both PII and ATase bound α -ketoglutarate (α -kg) in direct binding assays. Several lines of evidence suggested that PII contains the high affinity α -kg binding site and ATase the low affinity site. This study demonstrates for the first time that the two small effector-molecules α -kg and glutamine (gln) probably bind in the last 340 residues of ATase (Q2-C domain), possibly near the adenylylation active site.

The demonstration that the ATase mutant W694G presented a gln independent phenotype suggests that the bulky side chain of Trp 694 must move out of the adenylylation active site, so that GS can dock and be modified. Surface plasmon resonance (SPR) data suggested the binding of gln within Q2-C is transmitted to the R domain as an allosteric inhibitor of PII-UMP binding, and consequently deadenylylation.

A panel of mAbs was also produced against PII and characterised using a series of PII mutants. Two of the PII mAbs 19G4 (binds PII/GlnK) and 24H2 (binds PII) were used further to demonstrate that heterotrimers are formed between PII and GlnK *in vivo* in nitrogen starved cells.

It is well documented that the T-loops of PII and GlnK are probably the principal regions used by these signalling proteins to bind to the various receptor-proteins such as ATase, UTase and NRII. This study suggests PII and GlnK also interact with GS. Using PII mutants carrying specific GlnK residues at positions 43, 52 and 54 in the T-loop this study demonstrated the Asp at position 54 was the critical determinant of PII T-loop binding to GS, whereas the interaction with UTase involved both Asp54 and Thr43.

PUBLISHED PAPERS

Hall, R. A., Kay, B. H., Burgess, G. W., **Clancy, P.,** and Fanning, I. D. (1990). Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis. *J. Gen. Virol.* **71**: 2923-2930.

Hall, R. A., Burgess, G. W., Kay, B. H., and Clancy, P. (1991). Monoclonal antibodies to Kunjin and Kokobera viruses. *Immunol. Cell. Biol.* **69**: 47-49.

Breinl, R. A. **Clancy**, **P.**, McBride, W. J. H., and Vasudevan, S. G. (1997). Cloning and expression of the exposed portion of the four dengue virus serotypes. *Arbovir. Res. In Aust.* 7: 21-24.

van Heeswijk, W. C., Wen, D., **Clancy, P.**, Jaggi, R., Ollis, D. L., Westerhoff, H., V., and Vasudevan, S. G. (2000). The *Escherichia coli* signal transducers PII (GlnB) and GlnK form heterotrimers *in vivo*: Fine tuning the nitrogen signal cascade. *Proc. Nat. Acad. Sci. USA* **97**: 3942-3947.

Xu, Y., Carr, P. D., **Clancy, P.,** Garcia-Dominguez, M., Forchhammer, K., Florencio, F., Tandeau de Marsac, N., Vasudevan, S., and Ollis, D. (2003). The structures of the PII proteins from the cyanobacteria *Synechococcus* sp. PCC 7942 and *Synechocystis* sp. PCC 6803. *Acta Cryst D.* **59**: 2183-2190.

Xu, Y., Wen, D., **Clancy, P.,** Carr, P. D., Ollis, D. L., and Vasudevan, S. G. (2004). Expression, purification, crystallization and preliminary X-ray analysis of the N-terminal domain of *Escherichia coli* adenylyltransferase. *Protein Expr. Purif.* **34**:142-6.

MANUSCRIPTS IN PREPARATION

Clancy, **P.**, Teakle, L and Vasudevan, S. G. Production and characterization of monoclonal antibodies to proteins in the nitrogen assimilation cascade in *Escherichia coli*.

Clancy, P., Xu, Y, Carr, P. D., Vasudevan, S. G. and Ollis, D. L. Structure and function of PII: mapping small molecule binding using mutants

Clancy, P., and Vasudevan, S. G. Adenylyl transferase is a mutidomain protein containing a central regulatory domain that controls the two opposing activity domains

CONFERENCE PRESENTATIONS

Hall, R. A., Burgess, G. W., Kay, B. H., and **Clancy**, **P.** (1988). Application of monoclonal antibodies to the study of Australian flaviviruses. Presented to the Australian Society for Immunology annual Conference, Canberra.

Hall, R. A., Kay, B. H., Burgess, G. W., **Clancy, P.**, and Fanning, I. D. (1989). Examination of Flavivirus epitopes using monoclonal antibodies to Murray Valley encephalitis, Kunjin and Kokobera viruses. Presented as a poster at the 5th Australian Arbovirus Symposium, Brisbane.

Hall, R. A., Burgess, G. W., **Clancy**, **P.**, and Kay, B. H. (1989). Detection of serum antibodies to specific flavivirus epitopes using monoclonal antibodies. Presented to the 5th Australian Arbovirus Symposium, Brisbane.

Burgess, G. W., **Clancy**, **P.**, and Yan, M. (1992). Development of monoclonal antibody based ELISA diagnostic for alphaviruses. Presented to the Arbovirus Research in Australia Symposium, Brisbane.

Clancy, P., and Vasudevan, S. G. (1999). The Role of Small Effector Molecules in Nitrogen Signal Transduction Studied Using Surface Plasmon Resonance. Presented as a poster at COMBIO conference for Australian Society for Biochemistry and Molecular Biology, Gold Coast.

Clancy, P., Xu, Y., Carr, P. D., Ollis, D. L., and Vasudevan, S. G. (2001). Mutational analysis of PII. Presented as a poster at COMBIO conference for Australian Society for Biochemistry and Molecular Biology, Canberra.

Clancy, P.*, McLoughlin, S.*, Xu, Y., Ollis, D. L., and Vasudevan, S. G. (2002). Site-Directed Mutagenesis Analysis Indicates That The Two Opposing Activities Of Adenylyl Transferase Are Carried Out Within Active Sites That Are Very Similar To Human DNA Polymerase β . Presented as a poster at COMBIO conference for Australian Society for Biochemistry and Molecular Biology, Sydney.

CONTENTS

TITLE PAGE		
DECLARATION		
STATEMENT OF ACCESS	iii	
ABSTRACT	iv	
PUBLICATIONS	vi	
CONTENTS	viii	
LIST OF FIGURES	XV	
LIST OF TABLES	XXV	
ABBREVIATIONS	xxix	
ACKNOWLEDGEMENTS	xxxii	
1 Introduction	1	
1.1. The nitrogen signalling nothway in <i>Eacherichia cali</i>	1	
1.1 The introgen signalling pathway's response to high levels of nitrogen	1	
1.1.2 The nitrogen signalling pathway's response to low levels of nitrogen	4	
1.1.2 The introgen signating patiway's response to low levels of introgen 1.1.3 The role of small effector molecules in the nitrogen signalling nathway		
1.1.4 The role of the PII paralogue GlnK in the nitrogen signalling pathway	5	
1 1 4 1 Proposed roles for GlnK	6	
1 1 4 2 Demonstrated functions of GlnK	6	
1.2 Structure and function of proteins in the nitrogen signalling pathway	8	
1.2 Structure and function of proteins in the introgen signating pathway	9	
1.2.2 Uridylyl transferase/ removing enzyme (UTase)	10	
1.2.2 Adenvlvl transferase (ATase)	11	
1.2.4 Nitrogen regulating protein I (NRI or NtrC)	17	
1.2.5 Nitrogen regulating protein II (NRII or NtrB)	19	
1.2.6 The signalling proteins PII and GlnK	20	
1.3 Aims	24	
2 Materials and Methods	26	
2.1 Materials	26	
2.1.1 Chemicals	26	
2.1.2 Proteins	26	
2.1.2.1 Restriction enzymes	26	
2.1.2.2 Other enzymes	27	
2.1.2.3 Antibodies	27	
2.1.2.4 Other proteins	27	
2.1.3 Buffers and solutions	27	
2.1.3.1 Antibody production solutions and additives	27	
2.1.3.2 DNA manipulations	28	
2.1.3.3 Protein manipulations	29	
2.1.3.3.1 SDS PAGE	29	
2.1.3.3.2 Native non-denaturing PAGE	30	
2.1.3.4 Western blotting	30	
2.1.3.5 ELISA	31	

2.1.3.6	SPR analysis	31
2.1.3.7	GS adenylylation/deadenylylation assay	32
2.1.3.8	Uridylylation assay	32
2.1.3.9	Radio-labelled effector binding assay	32
2.1.4 Bact	erial strains	33
2.1.5 Bact	erial growth medium and additives	33
2.1.5.1	Non-selective media	33
2.1.5.2	Selective media	33
2.1.6 Vect	ors	34
2.1.6.1	Parent vectors	34
2.1.6.2	Recombinant vectors	34
2.1.7 Oligo	onucleotides	35
2.1.7.1	PCR and sequencing primers	35
2.1.7.2	Primers for site directed mutagenesis	36
2.1.8 Cell	culture lines	36
2.1.9 Hybr	idoma culture media	36
2.2 Methods		37
2.2.1 Mic	robiological methods	37
2.2.1.1	Growth of <i>E. coli</i> cultures on solid media in plates	37
2.2.1.2	Growth of <i>E. coli</i> cultures in liquid media	37
2.2.1.3	Preparation of competent E. coli cells	38
2.2.1.4	Transformation of competent E. coli cells	38
2.2.1.5	Storage of <i>E. coli</i> cells in DMSO	39
2.2.2 Nucl	eic acid manipulations	39
2.2.2.1	Small-scale plasmid preparation: CTAB method	39
2.2.2.2	Small/medium-scale plasmid preparation: CONCERT kit method	40
2.2.2.3	DNA digestion with restriction enzymes	40
2.2.2.4	Ligation with T4 DNA ligase	41
2.2.2.5	Site-directed mutagenesis	41
2.2.3 Agar	ose gel electrophoresis for separation of DNA	42
2.2.3.1	DNA separation	42
2.2.3.2	Isolation and purification of DNA: CONCERT extraction kit	42
2.2.3.3	Concentration of DNA fragments: ethanol precipitation	42
2.2.4 Poly	merase chain reaction (PCR) for nucleic acid amplification	43
2.2.4.1	DNA fragments for cloning	43
2.2.4.2	Site-directed mutagenesis	43
2.2.4.3	Automated sequencing	44
2.2.4.4	Screening with colony PCR for positive transformants	45
2.2.5 Prote	in production	45
2.2.5.1	Thermal induction of protein over-expression	45
2.2.5.2	IPTG induction of protein over-expression	46
2.2.5.3	Small-scale protein induction and freeze/thaw lysis	46
2.2.5.4	Solubility of expressed proteins	47
2.2.5.5	Large-scale protein induction	47
2.2.5.6	Uridylylation of PII/GInK effector-proteins for deadenylylation as	says
		48
2.2.4	5.6.1 Large-scale undylylation of purified protein	48
2.2.3	5.6.2 Small-scale uridylylation of partly purified protein	49

2.2.6 Protein	separation-polyacrylamide gel electrophoresis (PAGE)	49
2.2.6.1 S	DS PAGE preparation	49
2.2.6.1	.1 Gel preparation	49
2.2.6.1	2 Sample preparation	50
2.2.6.1		50
2.2.6.2 N	ative PAGE preparation	51
2.2.6.2	2.1 Gel preparation	51
2.2.6.2	2.2 Sample preparation	51
2.2.6.3 C	oomassie staining/destaining of PAGE gels	51
2.2.6.4 D	brying coomassie stained gels	51
2.2.6.5 W	Vestern blot analysis of gels	52
2.2.6.5	5.1 Protein transfer to nitrocellulose membrane	52
2.2.6.5	5.2 Immunoblotting the nitrocellulose membrane	52
2.2.7 Protein	purification	53
2.2.7.1 F	rench press cell lysis	53
2.2.7.2 D	NA precipitation	53
2.2.7.3 P	rotein precipitation	53
2.2.7.4 D	EAE Fractogel chromatography	54
2.2.7.5 P	urification of UTase protein for uridylylation assays	55
2.2.7.6 P	urification of ATase/AT-C517/AT-N440 proteins for adenylylat	ion and
deadenylylation a	ssays	55
2.2.7.7 P	urification of PII protein for adenylylation assays	56
2.2.7.8 P	urification of GlnK protein for adenylylation assays	56
2.2.7.9 P	urification of GS/GS-AMP proteins for aden/deadenylylation	assays
		57
2.2.8 Protein	1 quantification	59
2.2.8.1 1	otal solution: Bradford assay	59
2.2.8.2 Ir	idividual bands on gel: standard curve	59
2.2.9 Produc	tion of monoclonal antibodies	60
2.2.9.1 N	lyeloma (Sp2/0) cell line culture	60
2.2.9.2 N	louse sarcoma cell line culture	60
2.2.9.3 If	nmunisation of mice	60
2.2.9.3	Preparation of the inoculum	61
2.2.9.3	2. Trilling for the schedule	61
2.2.9.3	0.3 Tail bleeding of mice	61
2.2.9.3 2.2.0.4 D	reduction of essitie fluid	02 62
2.2.9.4	1 Mencelenel antibody	62
2.2.9.4	2. Delvelonal antibody	62
2.2.9.4 2.2.5 E	5.2 Folyclonal antibody	62
2.2.9.3 F	1 Prenaration of the myeloma cells	63
2.2.9.5	2. Preparation of the spleen cells	64
2.2.9.5	5.2 Fusion by stirring	64
2.2.9.3 フクロム ロ	v.s i usion by suiting (vbridoma cell line culture	65
2.2.7.0 N 2.0.4	1 Preliminary hybridoma cell line culture	65
2.2.9.0	5.2 Subsequent hybridoma cell line culture	65
2.2.9.0	5.2 Single cell cloning by limiting dilution	66
2.2.9.0	5.4 Cryopreservation of hybridoma cell lines	60 67
2.2.9.0	7.7 Cryopreservation of hybridolina centimes	07

2.2.9.6.5 Thawing cell lines from liquid nitrogen	57
2.2.9.7 Isotyping monoclonal antibodies	57
2.2.9.8 Purification of antibodies using protein A agarose chromatography	58
2.2.10 In vitro assays	59
2.2.10.1 Uridylylation assay	59
2.2.10.1.1 Steady state assay	59
2.2.10.1.2 Initial rate assay	70
2.2.10.1.3 Conversion of DPM values to [bound radio-ligand]	70
2.2.10.2 GS activity assays	70
2.2.10.2.1 Adenylylation assay	71
2.2.10.2.2 Deadenylylation assay	71
2.2.10.2.3 Determination of GS adenylylation state	71
2.2.10.2.4 Initial rate assay	72
2.2.10.3 Direct binding of radiolabelled small effector-molecules	72
2.2.10.4 ELISA	72
2.2.11 Surface plasmon resonance (SPR) analysis	73
2.2.11.1 Protein immobilisation on SPR chip	73
2.2.11.2 SPR binding experiments and data analysis	74
2.2.11.3 Kinetic analysis	75

3 Production and Characterisation of Monoclonal Antibodies to PII and ATase

76

3.1 Introduction	76
3.2 Methods	78
3.2.1 Expression and purification of proteins	78
3.2.1.1 Purified PII/GlnK and PII mutants	78
3.2.1.2 Purified ATase and truncation constructs	80
3.2.1.3 ATase, truncation constructs and mutants cell lysates	80
3.2.2 Production and characterisation of hybridomas	80
3.2.2.1 ELISA	82
3.2.2.2 Western blotting	82
3.2.3 Isotyping and purification of monoclonal antibodies	83
3.3 Results	83
3.3.1 PII mAb binding to the PII mutant proteins using ELISA	83
3.3.2 Initial ATase monoclonal antibody binding to the AT-C ₅₂₂ and AT-N ₄₄₀	
polypeptides using ELISA	91
3.3.3 ATase mAb binding to all the ATase truncation constructs and ATase	
mutants using Western blotting	93
3.3.3.1 R domain mAbs	94
3.3.3.2 C domain mAbs	95
3.3.3.3 N domain mAb	97
3.4 Discussion	99

4 Investigation of Structure and Function of PII by Site-directed Mutagenesis and its Functional Characterisation in the Adenylylation Cascade 102

4.1	Introduction

102

4.2	Methods	106
	4.2.1 Expression and purification of the proteins	106
	4.2.2 Direct small effector binding assay	107
	4.2.3 Adenylylation assays	107
	4.2.4 SPR binding studies	107
	4.2.5 Uridylylation assay	108
4.3	Results	108
	4.3.1 Direct ATP binding to PII and PII mutants	108
	4.3.2 Direct α -kg binding to PII and PII mutants	110
	4.3.3 Adenylylation activity stimulated by PII and PII mutants	111
	4.3.4 Direct binding of PII and several PII mutants to ATase using surface pla	asmon
resc	nance	114
	4.3.5 Uridylylation of PII and PII mutants	119
4.4	Discussion	119
5]	nvestigation of the Functional Differences of PII and GlnK in the	
Ad	enylylation Cascade	124
5.1	Introduction	124
5.2	Methods	128
	5.2.1 Expression and purification of the proteins	128
	5.2.2 SPR binding studies	130
	5.2.3 Adenylylation and deadenylylation assays	130
	5.2.4 Direct small effector binding assay	130
	5.2.5 Uridylylation assay	130
	5.2.6 Uridylylation of the partly purified effector-proteins	131
5.3	Results	131
	5.3.1 ATase binding constants using surface plasmon resonance	131
	5.3.2 Adenylylation and deadenylylation assays	133
	5.3.2.1 Standard adenylylation condition with and without α -kg (10 μ M)	133
	5.3.2.2 Standard deadenylylation condition	134
	5.3.2.3 Glutamine effect on deadenylylation with no α -kg present	135
	5.3.2.4 Interplay between effector-proteins within the assays	136
	5.3.2.4.1 Adenylylation	137
	5.3.2.4.2 Deadenylylation	138
	5.3.3 ATP binding to PII and GlnK	139
	5.3.4 α-kg binding to PII and GlnK	140
	5.3.5 Uridylylation assay	140
	5.3.6 Comparison of swapped PII to GlnK mutants	141
	5.3.6.1 Adenylylation assay	142
	5.3.6.2 Deadenylylation assay	143
	5.3.6.3 Uridylylation	144
5.4	Discussion	145
6	The Bifunctional Enzyme ATase has a Central Domain Flanked by the Tw	'0
Act	ivity Possessing Domains	150
6.1	Introduction	150

6.2 Meth	nods	153
6.2.1	Expression and purification of proteins	153
6.2.2	Construction of the R domain truncation construct	154
6.2.3	Solubility of the R domain truncation construct	154
6.2.4	Production of monoclonal and polyclonal antibodies to ATase	155
6.2.5	Adenylylation and deadenylylation assays	155
6.3 Resu	ılts	155
6.3.1	Construction of the R domain truncation construct	157
6.3.2	Solubility of the R domain truncation construct	158
6.3.3	Solubility of further truncated constructs of ATase	159
6.	3.3.1 AT-N ₃₁₁	159
6.	3.3.2 AT-C ₂₃₅	160
6.3.4	Enzymatic activities of the truncated constructs of ATase	160
6.	3.4.1 The adenylylation activity of C-terminal truncation constructs and	their
dependen	ce on PII and gln	160
6.	3.4.2 Characterisation of the AT-N ₄₄₀ construct in deadenylylation activ	ity
assay		162
6.	3.4.3 Comparison of activity levels of ATase and truncated constructs	164
6.3.5	Probing the activities of ATase using monoclonal antibodies	165
6.	3.5.1 Effect of N domain mAb on ATase activity	165
6.	3.5.2 Effect of R domain mAbs on ATase activity	166
	6.3.5.2.1 Inhibition of PII binding in adenylylation	166
	6.3.5.2.2 Inhibition of PII-UMP binding in deadenylylation	167
6.	3.5.3 Effect of C domain mAbs on ATase activity	169
6.	3.5.4 Inhibition of GlnK stimulated ATase activity using mAbs	172
6.4 Disc	ussion	173
7 Intrar	nolecular signalling within ATase: Role of Glutamine and α -	
Ketoglut	arate in the Adenylylation Cascade	178
7.1 Intro	oduction	178
7.2 Meth	nods	182
7.2.1	Expression and purification of proteins	182
7.2.2	Adenylylation and deadenylylation assays	184
7.2.3	Direct small effector-molecule binding assay	184
7.3 Rest	ılts	184
7.3.1	Generation of new ATase mutants	184
7.3.2	Comparative activity levels of ATase catalytic site and predicted reversa	al
mutants		187
7.3.3	Glutamine binding	189
7.	3.3.1 ATase C-terminal truncation constructs in adenylylation	189
7.	3.3.2 Glutamine independence of the predicted adenylylation reversal	
mutants		190
7.	3.3.3 Inhibition of adenylylation active site mutants in deadenylylation	191
7.3.4	α -Ketoglutarate binding within the adenylylation catalytic complex	192
7.	3.4.1 Direct binding of α -kg to PII and ATase	192
7	2.4.2 A Tage N terminal transation constructs in deadenvaluation	193
/ •	5.4.2 A lase N-terminal function constructs in deadenyrylation	1))

7.3.4.4 PII and GlnK in adenylylation	195
7.3.5 Intramolecular signalling of small effector-molecule bindi	ing within ATase
	196
7.4 Discussion	198
8 GENERAL DISCUSSION	205
REFERENCES	213

LIST OF FIGURES

- Figure 1.1Diagrammatic presentation of the nitrogen-signalling pathway in E.
coli. Derived from van Heeswijk (1998). Cellular nitrogen level sensed by UTase. In
high N conditions UTase deuridylylates the signalling molecules PII-UMP/GlnK-UMP.
PII then stimulates ATase to adenylylate GS (inactivation). PII also interacts with NRII
stimulating it to phosphorylate NRI. NRI-P activates expression of glnA (GS). In low N
conditions PII is uridylylated by UTase. PII-UMP then stimulates ATase to
deadenylylate GS-AMP (activation)3
- *Figure 1.2 Structure of Glutamine synthetase.* Schematic diagram of the GS protein from *Salmonella typhimurium* (GS_{ST}) derived from the 3D X-ray crystal structure (Yamashita *et al.*, 1989). 9
- **Figure 1.3** Sequence alignment of various nucleotidyl transferases using polymerase motif. (a) Overlay of polymerase motifs from known 3D structures of nucleotidyl transferases (NT). Deadenylylation domain of ATase (AT-N₄₄₀) (green) (Xu et al., 2003b), human polymerase β (orange) (Sawaya et al., 1997), kanamycin NT (magenta) (Pedersen et al., 1995) and yeast poly A polymerase (cyan) (Bard et al., 2000; Martin et al., 2000). (b) Sequence alignment derived from structural overlay (Xu et al., 2003b). This sequence alignment differs slightly from the original alignment of Holm and Sander (1995). The UTase protein from *E. coli* has one β polymerase motifs. Highly conserved residues such as the double Asp in the catalytic site of rat DNA polymerase β have been highlighted in red and other residues also mutated in the two ATase active sites are highlighted in black (McLoughlin, 1999).
- **Figure 1.4** Analysis of the α -helix in the ATase Q1 linker. (a) Top view representation of the helical region of Q1 from residues 448-461. The respective amino acids and their relative positions in the helix are indicated on the helical wheel. The hydrophobic residues are highlighted in red, whilst the hydrophilic residues are black. The hydrophobicity of the residues was assigned according to Engelman *et al.*, (1986). (b) Schematic representation of AT-C₅₂₁, which includes the Q1 linker. The hydrophobic side of the α -helix in Q1 is associated with a proposed hydrophobic patch in the N-terminal region of the construct i.e. the putative R domain (diagram courtesy of Jaggi, 1998).
- **Figure 1.5** Schematic representation of the truncation constructs of ATase. N- and C-terminal truncation constructs of ATase produced by Jaggi (1998), Wen (2000), and O Donnell (2000). Truncations of the ATase protein (946 residues long) were designated AT-N or AT-C depending on their location in the linear polypeptide chain and the number of amino acid residues contained in each truncation construct is indicated by a subscripted figure (eg. AT-N₄₄₀ refers to the N-terminal 440 residues of ATase). Also indicated on the diagram are the positions of the two predicted β polymerase motifs (BPM1 & BPM2) (Holm and Sander, 1995) and the two Q-linkers (Q1 & Q2) (Wooton and Drummond, 1989). The black segments represent the boundaries between the adjoining constructs. 14

- **Figure 1.6** Structural model proposed for ATase. Jaggi (1998) proposed a structural model for ATase based on solubility and activity studies of the ATase truncation constructs (Figure 1.5). The ATase protein probably comprises three domains; the first of which, is the N-terminal domain (residues 1-440) which binds PII and PII-UMP/ α -kg and is responsible for the deadenylylation of the inactive GS-AMP protein. The second domain is the central domain (residues 463-604) which probably binds gln, and the third domain is the C-terminal domain (residues 627-946) which is responsible for adenylylation of the active GS protein. There are also two "Q" linker regions: Q1 (residues 441-462) and Q2 (residues 606-627) (Jaggi, 1998).
- **Figure 1.7** Structure of N domain of ATase. The 3D structure of the AT-N₄₄₀ construct (Figure 1.4) has now been solved with X-ray crystallography (Xu *et al.*, 2003b). The two highly conserved Asp173 and Asp175 residues within the deadenylylation active site (Holm and Sander, 1995), which are important for positioning the Mg^{2+} ion required for deadenylylation activity, and the Asn169 residue, which probably helps position the phosphate involved in the deadenylylation reaction correctly have been highlighted.
- Figure 1.8Structure of N-terminal domain of NRI. Structure of the N-terminal domain of
the NRI protein, which contains the highly conserved Asp54 residue (site of reversible
phosphorylation). This structure was determined using NMR spectroscopy (Volkman et
al., 1995).18
- *Figure 1.9 Structure of the nitrogen signalling proteins PII and GlnK of E. coli.* X-ray crystal structure of the PII (pink) (Carr *et al.*, 1996) and GlnK (cyan) (Xu *et al.*, 1998) proteins from *E. coli* have been overlaid to demonstrate their structural similarities. In (a) the monomer is depicted and in (b) the trimer is depicted. The three T-loop residues where they differ have also been highlighted. It must be noted that the position of the T-loops in these three dimensional structures is constrained by the crystal lattice of the protein crystal and only indicative of one of the many potential conformations for the T-loop, which is probably mobile in solution. 22
- *Figure 3.1 Monoclonal antibody production.* Schematic diagram of the process of producing murine hybridomas and monoclonal antibodies. 81
- Figure 3.2Indirect ELISA for screening mAb binding to PII and mutants.Schematic diagram of the principles behind the indirect ELISA used to characterisePII_{wt}, PII mutants and GlnK.83
- *Figure 3.3 PII/GlnK heterotrimers form in vivo.* Native gel (see section 2.2.6.2) of extracts from wild type *E. coli* (YMC10) and a PII deficient (RB9060) and GlnK deficient *E. coli* strain (WCH30) probed with mAb 19G4 (PII/GlnK) lanes 1-3, and mAb 24H2 (PII specific) lanes 4-6. van Heeswijk *et al.*, (2000) *PNAS* **97**:3942-3947. 90
- *Figure 3.4 Antigenic residues of the PII protein.* The antigenic residues determined from the comprehensive ELISA screens (Tables 3.2-3.5) have been highlighted in (a) ribbon diagram and (b) a surface diagram of the PII protein (Xu *et al.*, 1998). The three or four residues which showed a reduction in mAb binding are highlighted in red and the two residues, which still bound to all the mAbs but at a lower level are highlighted in blue.

91

- *Figure 3.5 R domain mAb binding to ATase and truncation constructs.* Western blot of 12% SDS PAGE (see section 2.2.6.5) of whole cell extracts for the ATase protein and various ATase truncation constructs (Table 3.7) using (a) mAb 5A7 as purified ascitic fluid (see section 2.2.9.8) and (b) mAb 39G11 as crude ascitic fluid. The bands indicating the appropriate induced proteins are marked with arrows. 94
- *Figure 3.6 C domain mAbs binding to ATase, truncation constructs and mutants.* Western blot of 12% SDS PAGE (see section 2.2.6.5) of whole cell extracts for the ATase protein, various ATase truncation constructs (Table 3.7) and ATase mutants using the C domain mAbs (a) 6A3 and (b)27D7 as purified ascitic fluid (see section 2.2.9.8). The bands indicating the appropriate induced proteins are marked with arrows. 96
- Figure 3.7N domain mAb binding to ATase, truncation constructs and mutants.Western blot of 12% SDS PAGE gel (see section 2.2.6.5) of whole cell extracts for the
ATase protein, various ATase truncation constructs and ATase point mutant proteins
using the N domain mAb 6B5 as purified ascitic fluid (see section 2.2.9.8). The bands
indicating the appropriate induced proteins are marked with arrows.97
- *Figure 3.8 Binding region of N domain mAb.* Surface diagram of AT-N₄₄₀ (Xu *et al.*, 2003b) the deadenylylation domain of ATase. The purple region is the first 311 residues of the protein where the 6B5 mAb binds. Also shown on the diagram is the binding cavity for the GS-AMP protein. 98
- *Figure 3.9 Monoclonal antibody binding regions of the ATase protein.* This diagram shows the regions of the ATase protein where the mAbs are binding derived from the Western blotting data using all the ATase truncation constructs and ATase point mutant proteins (see section 3.3.3). Also shown in the diagram are the putative active sites (Holm and Sander, 1995) and the two putative Q-linkers (Wooton and Drummond, 1989). 99
- Figure 4.1 Sequence alignment of several representative PII-like proteins. Sequences for 14 PII homologue proteins from different species recovered from the SWISS-prot data bank have been aligned. Residues highlighted in red were conserved in all of the 50 sequences retrieved. Residues highlighted in blue represent 1-3 changes out of the 50 sequences retrieved: Leu20 had 1 change, Tyr51 had 2 changes, Lys58 had 1 change, Thr83 had 3 changes, Asp88 had 1 change and Phe92 had 2 changes. Comparative sequence identities with the E. coli PII protein are given as a percentage. Secondary structural elements are designated according to Carr et al., (1996). Abbreviations and references are as follows: glnB_ecoli (E. coli; Vasudevan et al., 1991), glnB klepn (Klebsiella pneumoniae; Holtel and Merrick, 1988), glnB haein (Haemophilus influenzae; Fleischmann, 1995), glnB_braja (Bradyrhizobium japonicum; Martin et al., 1989), glnB azobr (Azospirillum brasilense; De Zamarockzy et al., 1990), glnB rhime (*Rhizobium meliloti*; Arcondeguy et al., 1996), glnB rhoru (Rhodospirillum rubrum; Johansson and Nordlund, 1996), glnB rhoca (Rhodobacter capsulatus; Kranz et al., 1990), glnK ecoli (E. coli GlnK; van Heeswijk et al., 1995), glnB rhilv (Rhizobium leguminosarum; Colonna-Romano et al., 1987), glnB synp7 (Synechococcus sp. PCC 7942; Tsinoremas et al., 1991), glnB_porpu (Porphyra purpurea; Reith and Munholland, 1993), nrgb_bacsu (Bacillus subtilis; Wray et al., 1994) and gln1 metmp (Methanococcus maripaludis; Kessler et al., 1998). 103
- *Figure 4.2 Location of mutated residues within the 3D model of the PII protein.* In this diagram the mutated residues have been highlighted in the (a) monomer, (b) trimer and (c) trimer surface of the *E. coli* PII protein. The residues have been assigned to the

important regions of the protein, such that green sidechains are T-loop mutants, blue sidechains are ATP-binding cleft entrance mutants, and red sidechains are ATP-binding cleft mutants. 104

- Figure 4.3 Adenylylation assays for PII and PII mutants. The representative curves (a & b) show adenylylation of the GS protein stimulated by several of the mutants and PII_{wt} protein. In (a) the assay has reached a steady state and in (b) only the first 5min are examined. Standard adenylylation conditions (see section 2.2.10.2.1) were used except that the GS concentration used was 25nM (half the normal concentration). The assays were also run with high α -kg (1mM) and low α -kg (10 μ M). All assays were performed in duplicate and with PII_{wt} as a reference. The initial rate curves were fitted with a linear regression using Microsoft Excel. For each of the mutants that had activity in the assay the R² coefficient for the linear regression was >94%, often 99% (except for T43A, which was 90% and E106A, which was 91%). PII_{wt} (open diamond), PII:Y51S (closed square), PII:G24D (closed triangle), PII:R103D (open triangle), PII:T104A (X), PII:K90N (open circle), no AT (closed diamond) and no PII (open square). The ATase protein has a small amount of activity when there is no PII protein present stimulated by gln alone (using half the normal concentration of GS protein minimised this activity). (c) Initial rates for all the mutant PII proteins expressed as a proportion of wild type activity without α -kg. 113
- Figure 4.4Surface Plasmon Resonance sensorgrams for PII and mutants
interacting with ATase. This figure shows the sensorgrams for PII,
wt (15µM) and
several mutants interacting with ligated ATase in SPR using the Biacore X (see section
4.2.4). A CM5 dextran chip was ligated with approximately 86 fmolmm⁻³ purified
ATase using amine coupling. For a negative control the various small effector mixes
with no protein were run across the ligated chip and the resulting curves subtracted
from the runs where protein had been included. The subtracted curves were used for the
analyses. Protein alone (black dashed), protein+1mM ATP+2mM Mg²⁺ (red dashed),
protein+1mM ATP+2mM Mg²⁺+2uM α-kg (solid black) and protein+1mM ATP+2mM
Mg²⁺+1mM α-kg (solid red).115
- Figure 4.5Comparative adenylylation rates and direct binding of PII and several
PII mutants to ATase. This curve shows the amount of PII_{wt} or PII mutant protein
bound to the ligated ATase protein 1min post addition of analyte protein (RU) derived
from Figure 4.4 presented as a proportion of PII_{wt} binding with no α-kg (solid colour).
Also included in this curve are the adenylylation rates for these conditions (see section
4.2.3) presented as a proportion of PII_{wt} activity with no α-kg (diagonal stripe). All
assays were performed in duplicate and with PII_{wt} protein as a reference. The initial rate
curves were fitted with a linear regression using Microsoft Excel. For each of the
mutant proteins that had activity in the assay the R² coefficient for the linear regression
was >94%, often 99%. ATase has a small amount of adenylylation activity when there
is no PII present stimulated by gln alone, this activity has been subtracted from the
adenylylation rates. In both assays high α-kg was 1mM, but in SPR and adenylylation
low α-kg was 2μM and 10μM, respectively.116
- *Figure 4.6 3D model of PII complexed to ATP.* (Xu *et al.*, 2001) In this (a) stick diagram and (b) surface diagram of the PII trimer (*E. coli*) the R103D residue has been highlighted in red and the complexed ATP molecule in cyan. Note the exposed section of the Asp at position 103 is adjacent to the exposed portion of the ATP molecule on the surface of the protein. In this crystal of PII the T-loop was disordered, so the structure of that region of the protein could not be resolved. 117

- Figure 4.7 Uridylylation assays for PII and PII mutants. The representative curves (a & b) show uridylylation of several of the PII mutants and PII_{wt} (*E. coli*). In (a) the assay has reached a steady state and in (b) only the first 5min are examined. Standard uridylylation conditions were used (see section 4.2.5). All assays were performed in duplicate and with PII_{wt} as a reference. The initial rate curves have been fitted with a linear regression using Microsoft Excel. For each of the PII mutants that showed activity in the assay the R² coefficient for the linear regression was >94%, often 99% (except for R103D, which was 90%). PII_{wt} (open diamond), PII:G24AT26A (closed square), PII:G24D (closed triangle), PII:Y51F (asterisk), PII:T104A (X), PII:E106A (closed circle). (c) Initial rates for all the PII mutants expressed as a proportion of wild type activity.
- *Figure 5.1 Structure of the nitrogen signalling proteins PII and GlnK of E. coli.* X-ray crystal structure of the PII (pink) (Carr *et al.*, 1996) and GlnK (cyan) (Xu *et al.*, 1998) proteins from *E. coli* have been overlaid to demonstrate their structural similarities. In (a) the monomer is depicted and in (b) the trimer is depicted. The three residues that differ in the T-loop have also been highlighted. (c) The 112 residues from the monomers of both proteins have been aligned. Non-conserved residues are highlighted in blue, and the highly conserved T-loop is highlighted in red. The three non-conserved residues within the T-loop: T43A, M52S and D54N are highlighted in purple. 125
- **Figure 5.2 Regulation of PII conformation.** The main C signal is α -kg. Trimeric PII has three α -kg binding sites and three uridylylation sites. The binding of α -kg influences the ability of PII to interact with ATase and NRII, both of which are involved in N regulation. At low α -kg concentrations, the conformation of PII is such that it is able to interact with ATase and NRII. At high α -kg concentrations, the conformation of PII is such that it cannot interact with ATase or NRII. Additionally, uridylylation reduces the negative co-operativity in α -kg binding. Ovals, circles and triangles are used to represent the three different conformations of PII. Small black dots represent bound molecules of α -kg (Diagram reproduced from Ninfa and Atkinson, 2000). 126
- *Figure 5.3* Adenylylation assay using the effector-proteins PII and GlnK. This assay shows the improvement in activity of the ATase protein with increasing concentrations of the GlnK protein by measuring the production of γ-glutamyl hydroxamate by GS. Both (a) standard assay conditions (see section 5.2.3) & (b) standard assay conditions + 10µM α-kg were used. No AT (•), 0.025µM PII (□), no PII (▲), 0.025µM GlnK (•), 0.125µM GlnK (△), 0.25µM GlnK (○). For (b) only 0.025µM PII (no α-kg) (■). All assays were performed in duplicate and with PII_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4.
- **Figure 5.4 Deadenylylation assay using the effector-proteins PII-UMP and GlnK-UMP.** This assay (see section 5.2.3) shows the improvement in deadenylylation activity of the ATase protein with increasing concentrations of the GlnK-UMP effector-protein by measuring the production of γ -glutamyl hydroxamate by GS-AMP. No AT (\diamond), 0.025 μ M PII-UMP (\blacksquare), 0.025 μ M GlnK-UMP (\blacktriangle), 1 μ M GlnK-UMP (\bullet), 2uM GlnK-UMP (\bullet). All assays were performed in duplicate and with PII_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4. 135
- Figure 5.5 Glutamine effect on PII-UMP and GlnK-UMP stimulation in deadenylylation with no α -kg present. This deadenylylation assay (see section 5.2.3) measured the amount of γ -glutamyl hydroxamate produced by GS-AMP, when

the assay used twice as much GS-AMP and uridylylated effector-proteins as standard conditions (see section 5.2.3), no α -kg and with/without gln (20mM). The initial rate curves have been fitted with a linear regression using Microsoft Excel. 50nM PII-UMP, no kg (\Diamond), 50nM PII-UMP, no kg, gln (20mM) (\blacksquare), 4 μ M GlnK-UMP, no kg, gln (20mM) (\bigcirc). All assays were performed in duplicate and with PII_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4. 136

- **Figure 5.6 PII mediated adenylylation effector-protein inhibition assay.** This curve shows the changes in activity of ATase stimulated by PII with additional effector-proteins added to the adenylylation assay. Activity is measured by the production of γ -glutamyl hydroxamate by GS. Standard assay conditions (see section 5.2.3) were used. PII (25nM) only (\blacklozenge), PII (25nM + PII-UMP (25nM) (\Box), PII (25nM + PII-UMP (500nM) (\blacktriangle), PII (25nM) + GlnK (25nM) (\circ), PII (25nM) + GlnK-UMP (25nM) (Δ). All assays were performed in duplicate and with PII_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4.
- Figure 5.7PII-UMP mediated deadenylylation effector-protein inhibition assay.
This assay shows the changes in activity of the ATase protein stimulated by the PII-
UMP protein with additional effector-proteins added to the deadenylylation assay.
Activity is measured by the production of γ-glutamyl hydroxamate by GS-AMP.
Standard assay conditions (see section 5.2.3) were used. PII-UMP (25nM) only (◊), PII-
UMP (25nM) + PII (25nM) (■), PII-UMP (25nM) + PII (125nM) (▲), PII-UMP
(25nM) + PII (5µM) (●), PII-UMP (25nM) + GlnK-UMP (250nM) (♦). All assays were
performed in duplicate and with PII_{wt} as a reference. Error bars have not been shown on
the curves as they hinder visual inspection. The standard error range for all the curves is
generally <0.4.</th>138
- *Figure 5.8 ATP binding to PII and GlnK.* PII and GlnK (10 μ M) were assessed for ATP binding (see section 5.2.4) using radio-labelled ¹⁴C ATP with and without α -kg (1mM). PII (teal), GlnK (pink), PII+1mM kg (blue) and GlnK+1mM kg (red). 139
- *Figure 5.9 \alpha-Ketoglutarate binding to PII and GlnK.* PII and GlnK (10µM) were assessed for α -kg binding (see section 5.2.4) using radio-labelled ¹⁴C α -kg in the presence of ATP (2mM). PII (blue) and GlnK (red). 140
- Figure 5.10 Uridylylation assay for purified PII and GlnK. These curves show the steady state assay (see section 2.2.10.1.1) and the first 5min of the assay in the inset (see section 2.2.10.1.2). The initial rate curves were fitted with a linear regression using Microsoft Excel. The rates of incorporation of UTP³H for PII and GlnK were 0.476 μMmin⁻¹ and 0.7899 μMmin⁻¹, respectively.
- **Figure 5.11** Comparative adenylylation rates for PII, GlnK and PII swapped mutants. The assay was performed with standard conditions (see section 5.2.3) (red) and standard conditions+10uM α -kg (blue). The activity of ATase was measured by the production of γ -glutamyl hydroxamate by GS. All assays were performed in duplicate and with PII_{wt} protein as a reference. The initial rate curves were fitted with a linear regression using Microsoft Excel. The initial rates for all the mutants have been expressed as a proportion of PII_{wt} protein standard activity. 142
- Figure 5.12 Comparative deadenylylation rates for uridylylated PII, GlnK and swapped PII T-loop mutants. Standard assay conditions were used (see section

5.2.3) (red). The assay was also run with PII-UMP, GlnK-UMP and uridylylated mutant proteins at 5x standard concentration (blue). The activity of ATase was measured by the production of γ -glutamyl hydroxamate by GS-AMP. All assays were performed in duplicate and with PII_{wt} protein as a reference. The initial rate curves were fitted with a linear regression using Microsoft Excel. The initial rates for all the proteins have been expressed as a proportion of their individual standard activity. 143

- *Figure 5.13* Uridylylation of partly purified PII, GlnK and swapped PII T-loop mutants. This non-denaturing PAGE gel (9% acrylamide) shows the degree of uridylylation of all the proteins after 20 min in the standard uridylylation reaction (see section 5.2.6). The first lane for each protein is the protein prior to uridylylation. The second lane for each protein is the uridylylated protein. The lower band is fully uridylylated protein and the bands in between are partly uridylylated protein. 144
- Figure 6.1 Schematic representation of the truncation constructs of ATase. (a) Truncations of the ATase protein (946 residues long) were designated AT-N or AT-C depending on their location in the linear polypeptide chain and the number of amino acid residues contained in each truncation construct is indicated by a subscripted figure (eg. AT-N₄₄₀ refers to the N-terminal 440 residues of ATase). Also indicated on the diagram are the positions of the two predicted β -polymerase motifs (BPM1 & BPM2) (Holm and Sander, 1995), the two Q-linkers (Q1 & Q2) (Wooton and Drummond, 1989), and the binding regions of the ATase mAbs (see Chapter 3). The solubility of the constructs is shown in pink. Soluble (S), partly soluble (PS), Insoluble (I), thermal induction (T), and IPTG induction at low temperature (T). (b) Western blot analysis of 12% SDS PAGE gel (see section 2.2.6.5) of whole cell extracts for the various truncation constructs using a purified mix of AT-N548 and AT-C522 polyclonal Ab ascitic fluid for detection (see section 6.2.4). The bands indicating the appropriate induced proteins are marked with arrows. 156
- *Figure 6.2 Generation of the R domain truncation construct.* (a) PCR product (see section 6.2.2) and (b) ligated plasmid (see section 6.2.2) visualised by agarose gel electrophoresis (see section 2.2.3.1). (c) BLAST search of the NCBI database using sequence derived from R domain vector (see section 6.2.2). Abbreviations and references are as follows: sf 2457T (*Shigella flexneri* 2a; Wei *et al.*, 2003), ec CFT073 (*E. coli*; Welch *et al.*, 2002), ec K12 (*E. coli*; Blattner *et al.*, 1997), sf 301 (*S. flexneri* 2a; Jin *et al.*, 2002), and ec (*E. coli*; van Heeswijk *et al.*, 1993). 157
- *Figure 6.3 Over-expression and solubility test for the R domain construct.* (a) Coomassie stained 15% PAGE gel showing expression of IPTG induced AT:RQ2 in BL21 (DE3) RecA cells (2.1.4) (see section 6.2.3). (b) Solubility analysis of the constantly expressed truncation construct AT:RQ2 at 18°C, 30°C and 37°C. Western blot of 15% SDS PAGE gel (see section 2.2.6.5) of whole cell extracts (wc) and cell-free lysates (sn) using purified mAb 5A7 (see section 2.2.9.4.2). 159
- **Figure 6.4** Adenylylation assays using ATase and C domain truncation constructs. These assays show the changes in activity of (a) ATase (purified), (b) AT-C₅₁₈ (purified), (c) AT-C₃₉₆ (purified), (d) AT-C₃₄₀ (cell lysate) and (e) AT: Δ R (cell lysate) (see section 6.2.1) under various conditions. Activity was assessed by determining the adenylylation state of GS by measuring the production of γ -glutamyl hydroxamate with various combinations of effector-molecules present in the assay. Standard assay conditions were used (see section 6.2.5). No AT/construct+PII+gln (\blacklozenge), AT/construct+PII+gln (\Box), AT/construct-PII+gln (Δ), AT/construct+PII-gln (\circ), and AT/construct-PII-gln (*). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual

inspection. The standard error range for all the curves is generally <0.4. (f) The first 5min were fitted with a linear regression using Microsoft Excel. The R^2 coefficients for these curves are usually >0.9. The initial rates for all the proteins have been expressed as a proportion of their standard activity. 161

Figure 6.5 Deadenylylation assays using ATase and the AT-N₄₄₀ **truncation construct.** These assays show the changes in activity of (a) ATase (purified) and (b) N-terminal truncation construct AT-N₄₄₀ (purified) (see section 6.2.1) under various conditions. Activity was assessed by determining the deadenylylation state of GS-AMP by measuring the production of γ -glutamyl hydroxamate with various combinations of effector-molecules present in the assay. Standard assay conditions were used (see section 6.2.5). No AT/construct+PII-UMP+ α -kg (\blacklozenge), AT/construct+PII-UMP+ α -kg (\Box), AT/construct-PII-UMP+ α -kg (Δ), and AT/construct+PII-UMP- α -kg (\odot). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4. (c) The first 5 min were fitted with a linear regression using Microsoft Excel. The R² coefficients for these curves are usually >0.9. The initial rates for all the proteins have been expressed as a proportion of their standard activity.

163

- **Figure 6.6** Inhibition of adenylylation and deadenylylation activity in ATase by N domain mAb 6B5. These assays show the changes in activity of ATase by measuring the production of γ -glutamyl hydroxamate by GS/GS-AMP when the 6B5 mAb is present in the (a) adenylylation and (b) deadenylylation assays. Standard assay conditions were used (see section 6.2.5). The purified mAb (see section 6.2.4) was preincubated with ATase (1:1) for 30min at room temperature. No AT+PII-UMP+ α -kg (\diamond), AT+PII-UMP+ α -kg (\Box), and AT+PII-UMP+ α -kg+6B5 (\circ). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4. 166
- **Figure 6.7** Inhibition of adenylylation activity in ATase and AT-C₅₁₈ by R domain mAbs 5A7 and 39G11. These assays show the changes in activity of (a) ATase and (b) the C-terminal truncation construct AT-C₅₁₈ in adenylylation by measuring the production of γ -glutamyl hydroxamate by GS with R domain mAbs 5A7 and 39G11 present. Standard assay conditions (see section 6.2.5) were used and the mAbs (see section 6.2.4) were preincubated with AT/AT-C₅₁₈ (1:1) for 30min at room temperature. No AT/AT-C₅₁₈+PII+gln (\blacklozenge), AT/AT-C₅₁₈+PII+gln (\Box), AT/AT-C₅₁₈-PII+gln (Δ), AT/AT-C₅₁₈+PII+gln+5A7 (\Diamond), and AT/AT-C₅₁₈+PII+gln+39G11 (-). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4. 167
- **Figure 6.8** Inhibition of deadenylylation activity in ATase by R domain mAb 5A7. This assay shows the change in activity of ATase in deadenylylation by measuring the production of γ -glutamyl hydroxamate by GS-AMP with R domain mAb 5A7 present. Standard assay conditions (see section 6.2.5) were used and the mAb (see section 6.2.4) was preincubated with AT (1:1) for 30min at room temperature. No AT+PII+gln (\blacklozenge), AT+PII-UMP+ α -kg (\Box), AT-PII-UMP+ α -kg (Δ), and AT+PII-UMP+ α -kg+5A7 (\diamondsuit). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4.

- *Figure 6.9* Deadenylylation activity of ATase in the presence of C domain mAbs 6A3 and 27D7. These assays show the changes in activity of ATase in deadenylylation by measuring the production of γ-glutamyl hydroxamate by GS-AMP with C domain mAbs 6A3 and 27D7 present. Standard assay conditions (see section 6.2.5) were used and the mAbs (see section 6.2.4) were preincubated with AT (1:1) for 30min at room temperature. No AT+PII-UMP+α-kg (♦), AT+PII-UMP+α-kg (□), AT+PII-UMP+α-kg+6A3 (+), and AT+PII-UMP+α-kg+27D7 (*). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4.
- Figure 6.10 Adenylylation activity of ATase and AT-C₅₁₈ in the presence of C domain mAbs 6A3 and 27D7. These assays show the changes in activity of (a) ATase and (b) the C-terminal truncation construct AT-C₅₁₈ in adenylylation by measuring the production of γ-glutamyl hydroxamate by GS with C domain mAbs 6A3 and 27D7 present. Standard assay conditions (see section 6.2.5) were used and the mAbs (see section 6.2.4) were preincubated with AT/AT-C₅₁₈ (1:1) for 30min at room temperature. No AT/AT-C₅₁₈+PII+gln (♦), AT/AT-C₅₁₈+PII+gln (□), AT/AT-C₅₁₈-PII+gln (Δ), AT/AT-C₅₁₈+PII+gln+6A3 (+), and AT/AT-C₅₁₈+PII+gln+27D7 (*). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.6. 170
- *Figure 6.11* Inhibition of C-terminal truncation construct activity by C domain mAbs 6A3 and 27D7 in adenylylation with no glutamine. These assays show the changes in activity of the C-terminal truncation constructs (a) AT-C₅₁₈ (purified; see section 6.2.1), (b) AT-C₃₉₆ (purified; see section 6.2.1), and (c) AT-C₃₄₀ (cell lysate; see section 6.2.1) in adenylylation with no gln. Activity was measured by the production of γ-glutamyl hydroxamate by GS with C domain mAbs 6A3 and 27D7 present. Standard assay conditions (see section 6.2.5) were used and the mAbs (see section 6.2.4) were preincubated with the constructs (1:1) for 30min at room temperature. No construct+PII+gln (♦), construct+PII+gln (□), construct+PII-gln (Δ), construct+PII-gln+6A3 (○), and construct+PII-gln+27D7 (*). All assays were performed in duplicate and with AT_{wt} as a reference. Error bars have not been shown on the curves as they hinder visual inspection. The standard error range for all the curves is generally <0.4. 171
- Figure 6.12 Schematic representation of the different conformations of ATase in adenylylation and deadenylylation. The activity results from the adenylylation and deadenylylation assays shown in Figures 6.4 and 6.5 have been summarised in this diagram. Uncomplexed ATase has a "closed" conformation (Jaggi, 1998) and has minimal activity in either assay. Removal of the N or R domains gives rise to polypeptides with similar adenylylation activity to PII complexed ATase and removal of the R+C domain gives rise to a polypeptide, which has activity independent of PII-UMP in deadenylylation. Addition of PII to the adenylylation assay or PII-UMP to the deadenylylation assay causes a shift in the position of the N domain relative to the C domain and ATase adopts the "open" conformation (Jaggi, 1998). The complexed ATase is then capable of adenylylating GS or deadenylylating GS-AMP, depending on the other effectors present in the assay. The adenylylation active site is shown in white and is accessible to GS in all the conformations except the uncomplexed "closed" conformation and the deadenylylation active site shown in cyan is accessible to GS-AMP in all conformations except the uncomplexed "closed" conformation. 175

- **Figure 7.1** Structure of the deadenylylation domain of ATase. X-ray crystal structure of the AT-N₄₄₀ truncation construct of the ATase protein from *E. coli*. (Xu *et al.*, 2003b). The three important residues from the McLoughlin (1999) suite of mutations have been highlighted. D173 and D175 hold the catalytic Mg^{2+} ion in position and N169 is probably involved in correct positioning of the phosphate group. These residues cluster in the probable GS-AMP binding site within the red ring. 179
- *Figure 7.2 Generation of the new ATase mutants.* (a) PCR product (see section 7.2.1) and (b) *Nde I* digested plasmid (see section 7.2.1) visualised by agarose gel electrophoresis (see section 2.2.3.1) for AT:W452P, AT:W456A and AT-N₄₄₀:N169G. 185
- *Figure 7.3 Mutated residue sequence data for new ATase mutants.* Sequence data generated by automated sequencing (see section 2.2.4.3) for the (a) AT:W452P, (b) AT:W456A and (c) AT-N₄₄₀:N169G mutants. The original ATase *glnE* sequence is shown in black. 185
- Figure 7.4Over-expression and solubility test by Western blot analysis of the three
new ATase mutants. Western blot of 12% SDS PAGE gel (see section 2.2.6.5) of
whole cell extracts (wc) and cell-free lysates (sn) using a mixture of purified mAbs
5A7, 6B5 and 27D7 (see section 2.2.9.4.2).186
- Figure 7.5 Glutamine effects in deadenylylation using ATase and various adenylylation active site mutants. This graph shows, the deadenylylation rate inhibition profiles for AT_{wt} and adenylylation active site mutants with various concentrations of gln added to the standard deadenylylation assay (see section 7.2.2). Activity was measured by the production of γ -glutamyl hydroxamate by GS-AMP. All assays were performed in duplicate and with AT_{wt} protein as a reference. The initial rate curves have been fitted with a linear regression using Microsoft Excel. The initial rates for all the proteins have been expressed as a proportion of their standard activity. 191
- *Figure 7.6 \alpha-Ketoglutarate binding to PII and ATase.* PII and ATase (10µM) were assessed for α -kg binding (see section 7.2.3) using radio-labelled ¹⁴C α -kg in the presence of ATP (2mM). PII (blue) and ATase (red). 192
- **Figure 7.7** *α***-Ketoglutarate effects in adenylylation using PII and GlnK as the effector-protein. This curve shows, the adenylylation rate profiles for PII and GlnK with various concentrations of \alpha-kg added to the standard adenylylation assay (see section 7.2.2). Activity was measured by production of \gamma-glutamyl hydroxamate by GS. All assays were performed in duplicate and with PII_{wt} protein as a reference. The initial rate curves have been fitted with a linear regression using Microsoft Excel. The R² coefficient is generally >0.9. The stimulated initial rates for all the effector-proteins have been expressed as a proportion of their standard stimulated activity. 196**

Figure 8.1 Diagrammatic representation of the proposed new adenylylation cascade model. 211

LIST OF TABLES

- Table 1.1
 Functions of the GS regulatory proteins. Summary of the various functions of the known GS regulatory proteins in E. coli. (adapted from van Heeswijk (1998)).

 8
- Table 1.2Comparison of the structural elements of the signalling proteins PII
and GlnK from E. coli.21
- Table 3.1Recombinant proteins. List of the plasmids encoding the recombinant proteins
used in this chapter including the plasmid name and source.79
- Table 3.2Binding patterns for PII monoclonal antibodies against PII, and the
PII T-loop mutants. All the mAbs were characterised in an indirect ELISA format
(see section 3.2.2.1) using undiluted hybridoma culture supernatant with purified
protein (4µgmL⁻¹) coated directly to the plate and the optical density read at λ 405.
Antibody isotyping was performed using the Sigma isotyping kit modified to the same
indirect ELISA format (see section 2.2.9.7). The results have been colour coded for
easier interpretation. 0.101-0.500:red, 0.501-1.000:blue, 1.001-2.000:purple and
>2.000:green.
- Table 3.3Binding patterns for PII monoclonal antibodies against PII, and PIIATP-binding cleft mutants.All the mAbs were characterised in an indirectELISA format (see section 3.2.2.1) using undiluted hybridoma culture supernatant, withpurified protein (4µgmL⁻¹) coated directly to the plate and the optical density read at λ 405. The results have been colour coded for easier interpretation.0.501-1.000:blue, 1.001-2.000:purple and >2.000:green.86
- Table 3.4Binding patterns for PII monoclonal antibodies against PII and ATP-
binding cleft entrance mutants. All the mAbs were characterised in an indirect
ELISA format (see section 3.2.2.1) using undiluted hybridoma culture supernatant, with
purified protein (4µgmL⁻¹) coated directly to the plate and the optical density read at λ
405. The results have been colour coded for easier interpretation. 0.00-0.100:black with
aqua background, 0.101-0.500:red, 0.501-1.000:blue, 1.001-2.000:purple and
>2.000:green.87
- Table 3.5Binding patterns for PII monoclonal antibodies against PII, GlnK,
PII-UMP, GlnK-UMP and PII to GlnK at Val64 mutants. All the mAbs
were characterised in an indirect ELISA format (see section 3.2.2.1) using undiluted
hybridoma culture supernatant, with purified protein $(4\mu gmL^{-1})$ coated directly to the
plate and the optical density read at λ 405. The results have been colour coded for
easier interpretation. 0.00-0.100:black with aqua background, 0.101-0.500:red, 0.501-
1.000:blue, 1.001-2.000:purple and >2.000:green.88

- Table 3.6Initial screening of the ATase mAbs against ATase and the truncation
constructs AT-C₅₂₂ and AT-N₅₄₈. All the mAbs were run in an indirect ELISA
format (see section 3.2.2.1) using undiluted hybridoma culture supernatant titrated
across the plate, with purified protein $(4\mu gmL^{-1})$ coated directly to the plate and the
optical density read at λ 405. Antibody isotyping was performed using the Sigma
isotyping kit modified to the same indirect ELISA format (see section 2.2.9.7). (+)
denotes activity in ELISA (-) no activity in ELISA.92
- Table 3.7ATase truncation constructs. List of the ATase truncation constructs used in this
chapter including the region of the ATase protein the construct derives from, the
domains it encompasses, calculated molecular weight and source.93
- Table 4.1Recombinant proteins. List of the plasmids encoding the recombinant proteins
used in this chapter including the plasmid name and source.106
- Table 4.2Binding of ATP to PII and PII mutants. This table shows binding of ${}^{14}\text{C}$ labelled ATP (2µM) to PII_{wt} (*E. coli*) and mutant PII proteins (10µM), ± α-kg (1mM) atpH 7.5 and 6.0 (see section 4.2.2). All assays were performed in duplicate and withPII_{wt} as a reference, essentially according to Jiang *et al.*, (1997a) so that a directcomparison can be made with mutants described in their work. The amount of bindinghas been expressed as a proportion of PII_{wt} binding with no α-kg at pH 7.5 (927.5 ± 15.9DPM). At pH 7.5 and pH 6.0 PII_{wt} protein bound 36.6%±0.6% and 72.8%±5.8% of thetotal ATP present in the assay, respectively. When 1mM α-kg was added to the assaythe amount of ATP bound rose to 91.9%±0.1% and 97.6%±0.4% of total ATP presentin the assay, respectively.
- **Table 4.3 Binding of \alpha-kg to PII and PII mutants.** This table shows binding of ¹⁴C labelled α -kg (5 μ M) to PII_{wt} (*E. coli*) and mutant PII proteins (10 μ M) with ATP (2mM), \pm ATase protein (10 μ M) at pH 7.5 (see section 4.2.2). The assay was also performed at pH 6.0. Under these conditions the proteins were precipitating out, so the results have not been reported. All assays were performed in duplicate and with PII_{wt} as a reference. The amount of binding has been expressed as a proportion of PII_{wt} binding. PII_{wt} alone bound 64.5% \pm 0.2% of the total α -kg present in the assay, and when 10 μ M ATase was added the amount of α -kg bound rose to 73.5% \pm 0.3% of the total α -kg present in the assay. 111
- Table 5.1Recombinant proteins. List of the plasmids encoding the recombinant proteins
used in this chapter including the plasmid name and source.129
- Table 5.2Binding affinities of PII and GlnK to ATase under various small
effector-molecule conditions, using surface plasmon resonance. This
table shows the K_D values for PII, GlnK, PII-UMP and GlnK-UMP effector-proteins
interacting with the ligated ATase protein in SPR using the Biacore X (see section
2.2.11). A CM5 dextran chip was ligated with approximately 86 fmolmm⁻³ of purified
ATase (see section 2.2.7.6) using amine coupling (see section 2.2.11.2). The
disassociation constants were derived using Biaevaluation 3.0 software (see section
2.2.11.3). The chi² for each condition is shown in parentheses below the binding
constants. For the protein alone condition the analyte solution was also passed over a
blank chip, which had been activated and capped, but no protein ligated. This blank
chip was used as the negative control. For the conditions that included small effector-
molecules, the blank was set up as follows. The various small effector-molecule mixes
with no protein were run across the ligated chip and the resulting curves subtracted

from the runs where protein had been included. The subtracted curves were used for the analyses. Each condition had at least three replicates. 132

- Table 6.1Recombinant proteins. List of the plasmids encoding the recombinant proteins
used in this chapter including the plasmid name and source.153
- Table 6.2Relative activity levels for ATase, and the truncation constructs AT-
 C_{518} and AT-N₄₄₀. This table shows the relative adenylylation/deadenylylation
activity levels under standard conditions (see section 6.2.5) of the truncation constructs
AT-C₅₁₈ and AT-N₄₄₀, and full length ATase expressed as the activity rate per μ M. The
assays were run for 5min and the curves were fitted with a linear regression using
Microsoft Excel. The R² coefficient for each curve is shown in brackets.164
- Table 6.3Inhibition of PII-UMP binding by R domain mAbs 5A7 and 39G11.This table shows the initial deadenylylation activity of ATase stimulated only by PII-UMP in the presence and absence of the R domain mAbs, 5A7 and 39G11(see section 6.2.4). The activity was determined using initial rate assays, which measured the production of γ -glutamyl hydroxamate by GS-AMP (see section 6.2.5). The curves were fitted with a linear regression using Microsoft Excel and the resulting rates are shown here. The R² coefficient for each curve is shown in brackets.169
- Table 6.4Inhibition of ATase activity stimulated by all the effector-proteins
using monoclonal antibodies. Standard assay conditions were used where ATase
activity is measured by the production of γ -glutamyl hydroxamate by GS/GS-AMP (see
section 5.2.3) except the concentration of the GS/GS-AMP protein was 2x standard
conditions. The mAb was preincubated with ATase (1:1) for 30min at room
temperature. The 6B5, 5A7, 6A3 and 27D7 mAbs were purified and 39G11 was used as
crude ascitic fluid (see section 5.2.3). All assays were performed in duplicate and with
PII_{wt} as a reference. The initial rate curves were fitted with a linear regression using
Microsoft Excel. The R2 coefficient for the curves was generally >0.9. The initial rates
for all the effector-proteins have been expressed as a proportion of their standard
activity.172
- Table 7.1Recombinant proteins. List of the plasmids encoding the recombinant proteins
used in this chapter including the plasmid name and source.183
- Table 7.2Comparative adenylylation and deadenylylation rates for ATase and
ATase mutants. The activity of the ATase proteins, was assessed by measuring the
 γ -glutamyl hydroxamate produced by GS/GS-AMP. Standard assay conditions (see
section 7.2.2) were used except the ATase and ATase mutants were used at half normal
concentration i.e 12.5nM. All assays were performed in duplicate and with AT_{wt} protein
as a reference. The initial rate curves have been fitted with a linear regression using
Microsoft Excel. The R² coefficient is shown in brackets. The initial rates for all the
mutants have been expressed as a proportion of wild type activity. ATase mutants that
had no activity are listed as na.187
- Table 7.3Glutamine binding to entire ATase and the C-terminal truncation
constructs in adenylylation. This table shows the gln dependence of the entire
ATase protein and the C-terminal truncation constructs in adenylylation. The assay was
run with standard conditions (see section 7.2.2) and standard conditions without gln.
Activity was measured by the production of γ -glutamyl hydroxamate by GS. All assays
were performed in duplicate and with AT_{wt} protein as a reference. The initial rate

curves have been fitted with a linear regression using Microsoft Excel. The initial rates for all the constructs have been expressed as a proportion of their standard activity. 189

- Table 7.4Glutamine dependence of the ATase adenylylation reversal mutants in
adenylylation. The activity of the ATase proteins, was assessed by measuring the γ -
glutamyl hydroxamate produced by GS. Standard assay conditions (see section 7.2.2)
were used. All assays were performed in duplicate and with AT_{wt} protein as a reference.
The initial rate curves were fitted with a linear regression using Microsoft Excel. The
R² coefficients were generally >0.9. The initial rates for all the mutant ATase proteins
have been expressed as a proportion of their standard activity.190
- Table 7.5 α -Ketoglutarate binding to ATase and the N-terminal truncation
constructs in deadenylylation. This table shows the effect of α -kg on the activity
of ATase and the N-terminal truncation constructs in deadenylylation. The assay was
run with standard conditions (see section 7.2.2) and standard conditions without α -kg.
Activity was measured by the production of γ -glutamyl hydroxamate by GS-AMP. All
assays were performed in duplicate and with AT_{wt} protein as a reference. The initial rate
curves have been fitted with a linear regression using Microsoft Excel. The R²
coefficient is generally >0.9. The initial rates for all the proteins have been expressed as
a proportion of their standard activity.193
- Table 7.6 α -Ketoglutarate binding to ATase and several C-terminal truncation
constructs in adenylylation. This table shows the effect of α -kg on the activity of
ATase and several C-terminal truncation constructs in adenylylation. Standard assay
conditions (see section 7.2.2) were used, except twice as much GS was used. Activity
was measured by the production of γ -glutamyl hydroxamate by GS. All assays were
performed in duplicate and with AT_{wt} protein as a reference. The initial rate curves
were fitted with a linear regression using Microsoft Excel. The R² coefficient is
generally >0.9. The initial rates for all the proteins have been expressed as a proportion
of their standard activity.194
- Table 7.7Inhibition of the activity of ATase, mutants and truncation constructs
by small effector-molecules in the opposing assay. This table shows the
effect of α -kg (40mM) and gln (20mM) on the opposing activity of ATase, Q1 linker
mutants and a truncation construct with two Q1 linkers in adenylylation. The assays
were run with standard conditions (see section 7.2.2) and standard conditions with the
opposing small effector-molecule. Activity was measured by the production of γ -
glutamyl hydroxamate by GS/GS-AMP. All assays were performed in duplicate and
with AT_{wt} protein as a reference. The initial rate curves were fitted with a linear
regression using Microsoft Excel. The initial rates for all the proteins have been
expressed as a proportion of their standard activity.197

ABBREVIATIONS

Ab	Antibody
ABTS	2,2'-azino-bis 3-ethylbenzthiazoline 6-sulphonic acid
ADP	Adenosine diphosphate
Ag	Antigen
Ala	Alanine residue
AMP	Adenosine monophosphate
Arg	Arginine residue
Asn	Asparagine
Asp	Aspartate residue
ATase	Adenylyltransferase
ATP	Adenosine triphosphate
BCIP	15-bromo-4-chloro-3-indolyl phosphate p-toluidine salt
bp	Base pair
С	Carbon
°C	Degrees Celsius
cm^2	Centimetres squared
CPU	Central processing unit
CTAB	Cetyltrimethyl ammonium bromide
СТР	Cytidine triphosphate
d	Day
DEAE	Diethylaminoethyl
DMEM	Dulbeccos minimal essential media
DMF	Dimethylformamide
DMSO	Dimethylsuphoxide
DNA	Deoxyribonucleic acid
DPM	Disintegrations per minute
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme linked immunoassay
Ep	Epitope
g	Gram
GDH	Glutamate dehydrogenase
gln	Glutamine
Gln	Glutamine residue
glu	Glutamate
Glu	Glutamate residue
Gly	Glycine residue
GOGAT	Gltuamine amide-2-oxoglutarate amino transferase
GS	Glutamine synthetase
GS _{MT}	Glutamine synthetase from <i>Mycobacterium tuberculosis</i>
GS _{ST}	Glutamine synthetase from Salmonella typhimurium
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
His	Histidine residue
HRPO	Horseraddish peroxidase
IgG	Immunoglobulin G

IgM	Immunoglobulin M
Ile	Isoleucine residue
IP	Intraperitoneally
IPTG	Isopropyl-beta-D-thiogalactopyranoside
IV	Intravenously
K _d	Disassociation constant
K _m	Michaelis constant
kD	Kilodalton
α-kg	α-Ketoglutarate
L	Litre
λ	Wavelength
LB	Luria Bertani broth
Leu	Leucine residue
Lys	Lysine residue
M	Molar
mAb	Monoclonal antibody
Met	Methionine residue
Mg^{2+}	Magnesium ion
min	Minute
mg	Miligram
mĹ	Mililitre
mL^{-1}	Per mililitre
mM	Milimolar
Mn^{2+}	Manganese ion
Ν	Nitrogen
$NADP^+$	Nicotinamide adenine dinucleotide phosphate, oxidised form
NADPH	Nicotinamide adenine dinucleotide phosphate, reduced form
NBT	Nitrobluetetrazolium
NH ₃	Ammonia
nm	Nanometre
NMR	Nuclear magnetic resonance
NP40	Nonidet P40
OD ₄₀₅	Optical density measured at wavelength 405 nanometres
OD ₄₉₂	Optical density measured at wavelength 492 nanometres
OD ₅₉₅	Optical density measured at wavelength 595 nanometres
PAGE	Polyacrylamide gel electrophoresis
PEG	Polyethyleneglycol
Phe	Phenylalanine residue
PMSF	Phenylmethylsulphonyl fluoride
Pro	Proline residue
RNA	Ribonucleic acid
rpm	Revolutions per minute
SDS	Sodiumdodecylsulphate
Ser	Serine residue
SPR	Surface plasmon resonance
TCA	Trichloracetic acid
TEMED	N,N,N,N-tetramethylethylenediamine
Thr	Threonine residue

Tyrosine residue
Microcuries
Microgram
Microlitre
Micrometre
Micromolar
Uridine monosphate
Uridylyltransferase-uridylyl removing enzyme
Uridine triphosphate
Ultraviolet
Volts
Valine residue
Volume per volume
Per well
Weight per volume
Three dimensional

AKNOWLEDGEMENTS

First and foremost I thank my daughter, Erin for her patience in this long, drawn out endeavour, which has covered most of her lifetime.

I would also like to thank my supervisor Dr Vasudevan for his guidance and support.

Many of the truncation constructs and mutants used in this work were produced by other workers from Dr Vasudevans laboratory. To them I offer my thanks. A special thanks also to Dr Arcondeguy for her generous gift of the swapped T-loop PII mutant plasmids.

The last person I wish to thank is Dr Yibin Xu who produced all the 3D protein diagrams presented in this thesis. Unfailingly altering diagrams for me until they were just right. Never once complaining.