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ABSTRACT 

 

Adenylyl transferase (ATase), the glnE gene product from Escherichia coli, is a 

bifunctional enzyme that catalyses the opposing adenylylation and deadenylylation of 

glutamine synthetase (GS). The overall aim of this thesis was elucidation of the 

molecular mechanisms of the adenylylation cascade. 

 

A new central domain has been identified using ATase truncation constructs in activity 

assays and solubility trials. This new regulatory domain is flanked by two flexible Q-

linkers, Q1 and Q2. Thus the topology of ATase can be represented as N-Q1-R-Q2-C. 

The N domain was PII-UMP independent in in vitro deadenylylation assays, and had 

1000 fold less activity then entire ATase, suggesting PII-UMP binding impacts on the 

conformation of the deadenylylation active site. 

 

Monoclonal antibodies (mAbs) generated in this work against ATase were characterised 

using ATase mutants and the truncated proteins. Two mAbs, 5A7 (binds residues 502-

548) and 39G11 (binds residues 466-501) both binding in the R domain, blocked the 

binding of PII, GlnK, PII-UMP and GlnK-UMP to ATase. This is the first report that 

pinpoints the effector-protein binding sites to within the R domain of ATase.  

 

Both PII and ATase bound α-ketoglutarate (α-kg) in direct binding assays. Several lines 

of evidence suggested that PII contains the high affinity α-kg binding site and ATase 

the low affinity site. This study demonstrates for the first time that the two small 

effector-molecules α-kg and glutamine (gln) probably bind in the last 340 residues of 

ATase (Q2-C domain), possibly near the adenylylation active site.  

 

The demonstration that the ATase mutant W694G presented a gln independent 

phenotype suggests that the bulky side chain of Trp 694 must move out of the 

adenylylation active site, so that GS can dock and be modified. Surface plasmon 

resonance (SPR) data suggested the binding of gln within Q2-C is transmitted to the R 

domain as an allosteric inhibitor of PII-UMP binding, and consequently 

deadenylylation. 



 v

 A panel of mAbs was also produced against PII and characterised using a series of PII 

mutants. Two of the PII mAbs 19G4 (binds PII/GlnK) and 24H2 (binds PII) were used 

further to demonstrate that heterotrimers are formed between PII and GlnK in vivo in 

nitrogen starved cells. 

 

It is well documented that the T-loops of PII and GlnK are probably the principal 

regions used by these signalling proteins to bind to the various receptor-proteins such as 

ATase, UTase and NRII. This study suggests PII and GlnK also interact with GS. Using 

PII mutants carrying specific GlnK residues at positions 43, 52 and 54 in the T-loop this 

study demonstrated the Asp at position 54 was the critical determinant of PII T-loop 

binding to GS, whereas the interaction with UTase involved both Asp54 and Thr43.  
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boundaries between the adjoining constructs.         14 
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Figure 1.6 Structural model proposed for ATase. Jaggi (1998) proposed a structural model 
for ATase based on solubility and activity studies of the ATase truncation constructs 
(Figure 1.5). The ATase protein probably comprises three domains; the first of which, 
is the N-terminal domain (residues 1-440) which binds PII and PII-UMP/α-kg and is 
responsible for the deadenylylation of the inactive GS-AMP protein. The second 
domain is the central domain (residues 463-604) which probably binds gln, and the 
third domain is the C-terminal domain (residues 627-946) which is responsible for 
adenylylation of the active GS protein. There are also two “Q” linker regions: Q1 
(residues 441-462) and Q2 (residues 606-627) (Jaggi, 1998).        15 

 
Figure 1.7 Structure of N domain of ATase. The 3D structure of the AT-N440 construct 

(Figure 1.4) has now been solved with X-ray crystallography (Xu et al., 2003b). The 
two highly conserved Asp173 and Asp175 residues within the deadenylylation active 
site (Holm and Sander, 1995), which are important for positioning the Mg2+ ion 
required for deadenylylation activity, and the Asn169 residue, which probably helps 
position the phosphate involved in the deadenylylation reaction correctly have been 
highlighted.              16 

 
Figure 1.8 Structure of N-terminal domain of NRI. Structure of the N-terminal domain of 

the NRI protein, which contains the highly conserved Asp54 residue (site of reversible 
phosphorylation). This structure was determined using NMR spectroscopy (Volkman et 
al., 1995).             18 

 
Figure 1.9 Structure of the nitrogen signalling proteins PII and GlnK of E. coli. 

X-ray crystal structure of the PII (pink) (Carr et al., 1996) and GlnK (cyan) (Xu et al., 
1998) proteins from E. coli have been overlaid to demonstrate their structural 
similarities. In (a) the monomer is depicted and in (b) the trimer is depicted. The three 
T-loop residues where they differ have also been highlighted. It must be noted that the 
position of the T-loops in these three dimensional structures is constrained by the 
crystal lattice of the protein crystal and only indicative of one of the many potential 
conformations for the T-loop, which is probably mobile in solution.               22 

 
Figure 3.1 Monoclonal antibody production. Schematic diagram of the process of 

producing murine hybridomas and monoclonal antibodies.                81 
 
Figure 3.2 Indirect ELISA for screening mAb binding to PII and mutants. 

Schematic diagram of the principles behind the indirect ELISA used to characterise 
PIIwt, PII mutants and GlnK.                   83 

 
Figure 3.3 PII/GlnK heterotrimers form in vivo. Native gel (see section 2.2.6.2) of 

extracts from wild type E. coli (YMC10) and a PII deficient (RB9060) and GlnK 
deficient E. coli strain (WCH30) probed with mAb 19G4 (PII/GlnK) lanes 1-3, and 
mAb 24H2 (PII specific) lanes 4-6. van Heeswijk et al., (2000) PNAS 97:3942-3947.
              90 

 
Figure 3.4 Antigenic residues of the PII protein. The antigenic residues determined from 

the comprehensive ELISA screens (Tables 3.2-3.5) have been highlighted in (a) ribbon 
diagram and (b) a surface diagram of the PII protein (Xu et al., 1998). The three or four 
residues which showed a reduction in mAb binding are highlighted in red and the two 
residues, which still bound to all the mAbs but at a lower level are highlighted in blue. 
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Figure 3.5 R domain mAb binding to ATase and truncation constructs. Western blot 
of 12% SDS PAGE (see section 2.2.6.5) of whole cell extracts for the ATase protein 
and various ATase truncation constructs (Table 3.7) using (a) mAb 5A7 as purified 
ascitic fluid (see section 2.2.9.8) and (b) mAb 39G11 as crude ascitic fluid. The bands 
indicating the appropriate induced proteins are marked with arrows.       94 

 
Figure 3.6 C domain mAbs binding to ATase, truncation constructs and mutants. 

Western blot of 12% SDS PAGE (see section 2.2.6.5) of whole cell extracts for the 
ATase protein, various ATase truncation constructs (Table 3.7) and ATase mutants 
using the C domain mAbs (a) 6A3 and (b)27D7 as purified ascitic fluid (see section 
2.2.9.8). The bands indicating the appropriate induced proteins are marked with arrows.  
              96 

 
Figure 3.7 N domain mAb binding to ATase, truncation constructs and mutants.   

Western blot of 12% SDS PAGE gel (see section 2.2.6.5) of whole cell extracts for the 
ATase protein, various ATase truncation constructs and ATase point mutant proteins 
using the N domain mAb 6B5 as purified ascitic fluid (see section 2.2.9.8). The bands 
indicating the appropriate induced proteins are marked with arrows.       97 

 
Figure 3.8  Binding region of N domain mAb. Surface diagram of AT-N440 (Xu et al., 

2003b) the deadenylylation domain of ATase. The purple region is the first 311 
residues of the protein where the 6B5 mAb binds. Also shown on the diagram is the 
binding cavity for the GS-AMP protein.                 98 

 
Figure 3.9 Monoclonal antibody binding regions of the ATase protein. This diagram 

shows the regions of the ATase protein where the mAbs are binding derived from the 
Western blotting data using all the ATase truncation constructs and ATase point mutant 
proteins (see section 3.3.3). Also shown in the diagram are the putative active sites 
(Holm and Sander, 1995) and the two putative Q-linkers (Wooton and Drummond, 
1989).                   99 

 
Figure 4.1 Sequence alignment of several representative PII-like proteins. 

Sequences for 14 PII homologue proteins from different species recovered from the 
SWISS-prot data bank have been aligned. Residues highlighted in red were conserved 
in all of the 50 sequences retrieved. Residues highlighted in blue represent 1-3 changes 
out of the 50 sequences retrieved: Leu20 had 1 change, Tyr51 had 2 changes, Lys58 
had 1 change, Thr83 had 3 changes, Asp88 had 1 change and Phe92 had 2 changes. 
Comparative sequence identities with the E. coli PII protein are given as a percentage. 
Secondary structural elements are designated according to Carr et al., (1996). 
Abbreviations and references are as follows: glnB_ecoli (E. coli; Vasudevan et al., 
1991), glnB_klepn (Klebsiella pneumoniae; Holtel and Merrick, 1988), glnB_haein 
(Haemophilus influenzae; Fleischmann, 1995), glnB_braja (Bradyrhizobium japonicum; 
Martin et al., 1989), glnB_azobr (Azospirillum brasilense; De Zamarockzy et al., 1990), 
glnB_rhime (Rhizobium meliloti; Arcondeguy et al., 1996), glnB_rhoru 
(Rhodospirillum rubrum; Johansson and Nordlund, 1996), glnB_rhoca (Rhodobacter 
capsulatus; Kranz et al., 1990), glnK_ecoli (E. coli GlnK; van Heeswijk et al., 1995), 
glnB_rhilv (Rhizobium leguminosarum; Colonna-Romano et al., 1987), glnB_synp7 
(Synechococcus sp. PCC 7942; Tsinoremas et al., 1991), glnB_porpu (Porphyra 
purpurea; Reith and Munholland, 1993), nrgb_bacsu (Bacillus subtilis; Wray et al., 
1994) and gln1_metmp (Methanococcus maripaludis; Kessler et al., 1998).    103 

 
Figure 4.2 Location of mutated residues within the 3D model of the PII protein. In 

this diagram the mutated residues have been highlighted in the (a) monomer, (b) trimer 
and (c) trimer surface of the E. coli PII protein. The residues have been assigned to the 



 xviii

important regions of the protein, such that green sidechains are T-loop mutants, blue 
sidechains are ATP-binding cleft entrance mutants, and red sidechains are ATP-binding 
cleft mutants.             104 

 
Figure 4.3 Adenylylation assays for PII and PII mutants. The representative curves (a 

& b) show adenylylation of the GS protein stimulated by several of the mutants and 
PIIwt protein. In (a) the assay has reached a steady state and in (b) only the first 5min 
are examined. Standard adenylylation conditions (see section 2.2.10.2.1) were used 
except that the GS concentration used was 25nM (half the normal concentration). The 
assays were also run with high α-kg (1mM) and low α-kg (10µM). All assays were 
performed in duplicate and with PIIwt as a reference. The initial rate curves were fitted 
with a linear regression using Microsoft Excel. For each of the mutants that had activity 
in the assay the R2 coefficient for the linear regression was >94%, often 99% (except 
for T43A, which was 90% and E106A, which was 91%). PIIwt (open diamond), 
PII:Y51S (closed square), PII:G24D (closed triangle), PII:R103D (open triangle), 
PII:T104A (X), PII:K90N (open circle), no AT (closed diamond) and no PII (open 
square). The ATase protein has a small amount of activity when there is no PII protein 
present stimulated by gln alone (using half the normal concentration of GS protein 
minimised this activity). (c) Initial rates for all the mutant PII proteins expressed as a 
proportion of wild type activity without α-kg.               113 

 
Figure 4.4 Surface Plasmon Resonance sensorgrams for PII and mutants 

interacting with ATase. This figure shows the sensorgrams for PIIwt (15µM) and 
several mutants interacting with ligated ATase in SPR using the Biacore X (see section 
4.2.4). A CM5 dextran chip was ligated with approximately 86 fmolmm-3 purified 
ATase using amine coupling. For a negative control the various small effector mixes 
with no protein were run across the ligated chip and the resulting curves subtracted 
from the runs where protein had been included. The subtracted curves were used for the 
analyses. Protein alone (black dashed), protein+1mM ATP+2mM Mg2+ (red dashed), 
protein+1mM ATP+2mM Mg2++2uM α-kg (solid black) and protein+1mM ATP+2mM 
Mg2++1mM α-kg (solid red).                    115 

 
Figure 4.5 Comparative adenylylation rates and direct binding of PII and several 

PII mutants to ATase. This curve shows the amount of PIIwt or PII mutant protein 
bound to the ligated ATase protein 1min post addition of analyte protein (RU) derived 
from Figure 4.4 presented as a proportion of PIIwt binding with no α-kg (solid colour). 
Also included in this curve are the adenylylation rates for these conditions (see section 
4.2.3) presented as a proportion of PIIwt activity with no α-kg (diagonal stripe). All 
assays were performed in duplicate and with PIIwt protein as a reference. The initial rate 
curves were fitted with a linear regression using Microsoft Excel. For each of the 
mutant proteins that had activity in the assay the R2 coefficient for the linear regression 
was >94%, often 99%. ATase has a small amount of adenylylation activity when there 
is no PII present stimulated by gln alone, this activity has been subtracted from the 
adenylylation rates. In both assays high α-kg was 1mM, but in SPR and adenylylation 
low α-kg was 2µM and 10µM, respectively.                 116 

 
Figure 4.6 3D model of PII complexed to ATP. (Xu et al., 2001) In this (a) stick diagram 

and (b) surface diagram of the PII trimer (E. coli) the R103D residue has been 
highlighted in red and the complexed ATP molecule in cyan. Note the exposed section 
of the Asp at position 103 is adjacent to the exposed portion of the ATP molecule on 
the surface of the protein. In this crystal of PII the T-loop was disordered, so the 
structure of that region of the protein could not be resolved.      117 
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Figure 4.7 Uridylylation assays for PII and PII mutants. The representative curves (a & 
b) show uridylylation of several of the PII mutants and PIIwt (E. coli). In (a) the assay 
has reached a steady state and in (b) only the first 5min are examined. Standard 
uridylylation conditions were used (see section 4.2.5). All assays were performed in 
duplicate and with PIIwt as a reference. The initial rate curves have been fitted with a 
linear regression using Microsoft Excel. For each of the PII mutants that showed 
activity in the assay the R2 coefficient for the linear regression was >94%, often 99% 
(except for R103D, which was 90%). PIIwt (open diamond), PII:G24AT26A (closed 
square), PII:G24D (closed triangle), PII:Y51F (asterisk), PII:T104A (X), PII:E106A 
(closed circle). (c) Initial rates for all the PII mutants expressed as a proportion of wild 
type activity.           118 

 
Figure 5.1 Structure of the nitrogen signalling proteins PII and GlnK of E. coli. 

X-ray crystal structure of the PII (pink) (Carr et al., 1996) and GlnK (cyan) (Xu et al., 
1998) proteins from E. coli have been overlaid to demonstrate their structural 
similarities. In (a) the monomer is depicted and in (b) the trimer is depicted. The three 
residues that differ in the T-loop have also been highlighted. (c) The 112 residues from 
the monomers of both proteins have been aligned. Non-conserved residues are 
highlighted in blue, and the highly conserved T-loop is highlighted in red. The three 
non-conserved residues within the T-loop: T43A, M52S and D54N are highlighted in 
purple.             125 

 
Figure 5.2 Regulation of PII conformation. The main C signal is α-kg. Trimeric PII has 

three α-kg binding sites and three uridylylation sites. The binding of α-kg influences 
the ability of PII to interact with ATase and NRII, both of which are involved in N 
regulation. At low α-kg concentrations, the conformation of PII is such that it is able to 
interact with ATase and NRII. At high α-kg concentrations, the conformation of PII is 
such that it cannot interact with ATase or NRII. Additionally, uridylylation reduces the 
negative co-operativity in α-kg binding. Ovals, circles and triangles are used to 
represent the three different conformations of PII. Small black dots represent bound 
molecules of α-kg (Diagram reproduced from Ninfa and Atkinson, 2000).    126 

 
Figure 5.3 Adenylylation assay using the effector-proteins PII and GlnK. This assay 

shows the improvement in activity of the ATase protein with increasing concentrations 
of the GlnK protein by measuring the production of γ-glutamyl hydroxamate by GS. 
Both (a) standard assay conditions (see section 5.2.3) & (b) standard assay conditions + 
10µM α-kg were used. No AT (♦), 0.025µM PII (□), no PII (▲), 0.025µM GlnK (●), 
0.125µM GlnK (∆), 0.25µM GlnK (○). For (b) only 0.025µM PII (no α-kg) (■). All 
assays were performed in duplicate and with PIIwt as a reference. Error bars have not 
been shown on the curves as they hinder visual inspection. The standard error range for 
all the curves is generally <0.4.         134 

 
Figure 5.4 Deadenylylation assay using the effector-proteins PII-UMP and GlnK-

UMP. This assay (see section 5.2.3) shows the improvement in deadenylylation 
activity of the ATase protein with increasing concentrations of the GlnK-UMP effector-
protein by measuring the production of γ-glutamyl hydroxamate by GS-AMP. No AT 
(◊), 0.025µM PII-UMP (■), 0.025µM GlnK-UMP (▲), 1µM GlnK-UMP (●), 2uM 
GlnK-UMP (♦). All assays were performed in duplicate and with PIIwt as a reference. 
Error bars have not been shown on the curves as they hinder visual inspection. The 
standard error range for all the curves is generally <0.4.      135 

 
Figure 5.5 Glutamine effect on PII-UMP and GlnK-UMP stimulation in 

deadenylylation with no α-kg present. This deadenylylation assay (see section 
5.2.3) measured the amount of γ-glutamyl hydroxamate produced by GS-AMP, when 
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the assay used twice as much GS-AMP and uridylylated effector-proteins as standard 
conditions (see section 5.2.3), no α-kg and with/without gln (20mM). The initial rate 
curves have been fitted with a linear regression using Microsoft Excel. 50nM PII-UMP, 
no kg (◊), 50nM PII-UMP, no kg, gln (20mM) (■), 4µM GlnK-UMP, no kg (∆), 4µM 
GlnK-UMP, no kg, gln (20mM) (○). All assays were performed in duplicate and with 
PIIwt as a reference. Error bars have not been shown on the curves as they hinder visual 
inspection. The standard error range for all the curves is generally <0.4.     136 

 
Figure 5.6 PII mediated adenylylation effector-protein inhibition assay. This curve 

shows the changes in activity of ATase stimulated by PII with additional effector-
proteins added to the adenylylation assay. Activity is measured by the production of γ-
glutamyl hydroxamate by GS. Standard assay conditions (see section 5.2.3) were used. 
PII (25nM) only (♦), PII (25nM + PII-UMP (25nM) (□), PII (25nM + PII-UMP 
(500nM) (▲), PII (25nM) + GlnK (25nM) (○), PII (25nM) + GlnK-UMP (25nM) (∆). 
All assays were performed in duplicate and with PIIwt as a reference. Error bars have 
not been shown on the curves as they hinder visual inspection. The standard error range 
for all the curves is generally <0.4.         137 

 
Figure 5.7 PII-UMP mediated deadenylylation effector-protein inhibition assay. 

This assay shows the changes in activity of the ATase protein stimulated by the PII-
UMP protein with additional effector-proteins added to the deadenylylation assay. 
Activity is measured by the production of γ-glutamyl hydroxamate by GS-AMP. 
Standard assay conditions (see section 5.2.3) were used. PII-UMP (25nM) only (◊), PII-
UMP (25nM) + PII (25nM) (■), PII-UMP (25nM) + PII (125nM) (▲), PII-UMP 
(25nM) + PII (5µM) (●), PII-UMP (25nM) + GlnK-UMP (250nM) (♦). All assays were 
performed in duplicate and with PIIwt as a reference. Error bars have not been shown on 
the curves as they hinder visual inspection. The standard error range for all the curves is 
generally <0.4.           138 

 
Figure 5.8 ATP binding to PII and GlnK. PII and GlnK (10µM) were assessed for ATP 

binding (see section 5.2.4) using radio-labelled 14C ATP with and without α-kg (1mM). 
PII (teal), GlnK (pink), PII+1mM kg (blue) and GlnK+1mM kg (red).     139 

 
Figure 5.9 α-Ketoglutarate binding to PII and GlnK. PII and GlnK (10µM) were 

assessed for α-kg binding (see section 5.2.4) using radio-labelled 14C α-kg in the 
presence of ATP (2mM). PII (blue) and GlnK (red).       140 

 
Figure 5.10 Uridylylation assay for purified PII and GlnK. These curves show the steady 

state assay (see section 2.2.10.1.1) and the first 5min of the assay in the inset (see 
section 2.2.10.1.2). The initial rate curves were fitted with a linear regression using 
Microsoft Excel. The rates of incorporation of UTP3H for PII and GlnK were 0.476 
µMmin-1 and 0.7899 µMmin-1, respectively.        141 

 
Figure 5.11 Comparative adenylylation rates for PII, GlnK and PII swapped 

mutants. The assay was performed with standard conditions (see section 5.2.3) (red) 
and standard conditions+10uM α-kg (blue). The activity of ATase was measured by the 
production of γ-glutamyl hydroxamate by GS. All assays were performed in duplicate 
and with PIIwt protein as a reference. The initial rate curves were fitted with a linear 
regression using Microsoft Excel. The initial rates for all the mutants have been 
expressed as a proportion of PIIwt protein standard activity.      142 

 
Figure 5.12 Comparative deadenylylation rates for uridylylated PII, GlnK and 

swapped PII T-loop mutants. Standard assay conditions were used (see section 
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5.2.3) (red). The assay was also run with PII-UMP, GlnK-UMP and uridylylated mutant 
proteins at 5x standard concentration (blue). The activity of ATase was measured by the 
production of γ-glutamyl hydroxamate by GS-AMP. All assays were performed in 
duplicate and with PIIwt protein as a reference. The initial rate curves were fitted with a 
linear regression using Microsoft Excel. The initial rates for all the proteins have been 
expressed as a proportion of their individual standard activity.      143 

 
Figure 5.13 Uridylylation of partly purified PII, GlnK and swapped PII T-loop 

mutants. This non-denaturing PAGE gel (9% acrylamide) shows the degree of 
uridylylation of all the proteins after 20 min in the standard uridylylation reaction (see 
section 5.2.6). The first lane for each protein is the protein prior to uridylylation. The 
second lane for each protein is the uridylylated protein. The lower band is fully 
uridylylated protein and the bands in between are partly uridylylated protein.     144 

 
Figure 6.1 Schematic representation of the truncation constructs of ATase. (a) 

Truncations of the ATase protein (946 residues long) were designated AT-N or AT-C 
depending on their location in the linear polypeptide chain and the number of amino 
acid residues contained in each truncation construct is indicated by a subscripted figure 
(eg. AT-N440 refers to the N-terminal 440 residues of ATase). Also indicated on the 
diagram are the positions of the two predicted β-polymerase motifs (BPM1 & BPM2) 
(Holm and Sander, 1995), the two Q-linkers (Q1 & Q2) (Wooton and Drummond, 
1989), and the binding regions of the ATase mAbs (see Chapter 3). The solubility of the 
constructs is shown in pink. Soluble (S), partly soluble (PS), Insoluble (I), thermal 
induction (T), and IPTG induction at low temperature (I). (b) Western blot analysis of 
12% SDS PAGE gel (see section 2.2.6.5) of whole cell extracts for the various 
truncation constructs using a purified mix of AT-N548 and AT-C522 polyclonal Ab 
ascitic fluid for detection (see section 6.2.4). The bands indicating the appropriate 
induced proteins are marked with arrows.        156 

 
Figure 6.2 Generation of the R domain truncation construct. (a) PCR product (see 

section 6.2.2) and (b) ligated plasmid (see section 6.2.2) visualised by agarose gel 
electrophoresis (see section 2.2.3.1). (c) BLAST search of the NCBI database using 
sequence derived from R domain vector (see section 6.2.2). Abbreviations and 
references are as follows: sf 2457T (Shigella flexneri 2a; Wei et al., 2003), ec CFT073 
(E. coli; Welch et al., 2002), ec K12 (E. coli; Blattner et al., 1997), sf 301 (S. flexneri 
2a; Jin et al., 2002), and ec (E. coli; van Heeswijk et al., 1993).     157 

 
Figure 6.3 Over-expression and solubility test for the R domain construct. (a) 

Coomassie stained 15% PAGE gel showing expression of IPTG induced AT:RQ2 in 
BL21 (DE3) RecA cells (2.1.4) (see section 6.2.3). (b) Solubility analysis of the 
constantly expressed truncation construct AT:RQ2 at 18oC, 30oC and 37oC. Western 
blot of 15% SDS PAGE gel (see section 2.2.6.5) of whole cell extracts (wc) and cell-
free lysates (sn) using purified mAb 5A7 (see section 2.2.9.4.2).     159 

 
Figure 6.4 Adenylylation assays using ATase and C domain truncation constructs. 

These assays show the changes in activity of (a) ATase (purified), (b) AT-C518 
(purified), (c) AT-C396 (purified), (d) AT-C340 (cell lysate) and (e) AT:∆R (cell lysate) 
(see section 6.2.1) under various conditions. Activity was assessed by determining the 
adenylylation state of GS by measuring the production of γ-glutamyl hydroxamate with 
various combinations of effector-molecules present in the assay. Standard assay 
conditions were used (see section 6.2.5). No AT/construct+PII+gln (♦), 
AT/construct+PII+gln (□), AT/construct-PII+gln (∆), AT/construct+PII-gln (○), and 
AT/construct-PII-gln (*). All assays were performed in duplicate and with ATwt as a 
reference. Error bars have not been shown on the curves as they hinder visual 
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inspection. The standard error range for all the curves is generally <0.4. (f) The first 
5min were fitted with a linear regression using Microsoft Excel. The R2 coefficients for 
these curves are usually >0.9. The initial rates for all the proteins have been expressed 
as a proportion of their standard activity.        161 

 
Figure 6.5 Deadenylylation assays using ATase and the AT-N440 truncation 

construct. These assays show the changes in activity of (a) ATase (purified) and (b) 
N-terminal truncation construct AT-N440 (purified) (see section 6.2.1) under various 
conditions. Activity was assessed by determining the deadenylylation state of GS-AMP 
by measuring the production of γ-glutamyl hydroxamate with various combinations of 
effector-molecules present in the assay. Standard assay conditions were used (see 
section 6.2.5). No AT/construct+PII-UMP+α-kg (♦), AT/construct+PII-UMP+α-kg 
(□), AT/construct-PII-UMP+α-kg (∆), and AT/construct+PII-UMP-α-kg (○). All assays 
were performed in duplicate and with ATwt as a reference. Error bars have not been 
shown on the curves as they hinder visual inspection. The standard error range for all 
the curves is generally <0.4. (c) The first 5 min were fitted with a linear regression 
using Microsoft Excel. The R2 coefficients for these curves are usually >0.9. The initial 
rates for all the proteins have been expressed as a proportion of their standard activity. 
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Figure 6.6 Inhibition of adenylylation and deadenylylation activity in ATase by N 

domain mAb 6B5. These assays show the changes in activity of ATase by 
measuring the production of γ-glutamyl hydroxamate by GS/GS-AMP when the 6B5 
mAb is present in the (a) adenylylation and (b) deadenylylation assays. Standard assay 
conditions were used (see section 6.2.5). The purified mAb (see section 6.2.4) was 
preincubated with ATase (1:1) for 30min at room temperature. No AT+PII-UMP+α-kg 
(♦), AT+PII-UMP+α-kg (□), and AT+PII-UMP+α-kg+6B5 (○). All assays were 
performed in duplicate and with ATwt as a reference. Error bars have not been shown on 
the curves as they hinder visual inspection. The standard error range for all the curves is 
generally <0.4.           166 

 
Figure 6.7 Inhibition of adenylylation activity in ATase and AT-C518 by R domain 

mAbs 5A7 and 39G11. These assays show the changes in activity of (a) ATase and 
(b) the C-terminal truncation construct AT-C518 in adenylylation by measuring the 
production of γ-glutamyl hydroxamate by GS with R domain mAbs 5A7 and 39G11 
present. Standard assay conditions (see section 6.2.5) were used and the mAbs (see 
section 6.2.4) were preincubated with AT/AT-C518 (1:1) for 30min at room temperature. 
No AT/AT-C518+PII+gln (♦), AT/AT-C518+PII+gln (□), AT/AT-C518-PII+gln (∆), 
AT/AT-C518+PII+gln+5A7 (◊), and AT/AT-C518+PII+gln+39G11 (-). All assays were 
performed in duplicate and with ATwt as a reference. Error bars have not been shown on 
the curves as they hinder visual inspection. The standard error range for all the curves is 
generally <0.4.           167 

 
Figure 6.8 Inhibition of deadenylylation activity in ATase by R domain mAb 5A7. 

This assay shows the change in activity of ATase in deadenylylation by measuring the 
production of γ-glutamyl hydroxamate by GS-AMP with R domain mAb 5A7 present. 
Standard assay conditions (see section 6.2.5) were used and the mAb (see section 6.2.4) 
was preincubated with AT (1:1) for 30min at room temperature. No AT+PII+gln (♦), 
AT+PII-UMP+α-kg (□), AT-PII-UMP+α-kg (∆), and AT+PII-UMP+α-kg+5A7 (◊). 
All assays were performed in duplicate and with ATwt as a reference. Error bars have 
not been shown on the curves as they hinder visual inspection. The standard error range 
for all the curves is generally <0.4.         168 
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Figure 6.9 Deadenylylation activity of ATase in the presence of C domain mAbs 
6A3 and 27D7. These assays show the changes in activity of ATase in 
deadenylylation by measuring the production of γ-glutamyl hydroxamate by GS-AMP 
with C domain mAbs 6A3 and 27D7 present. Standard assay conditions (see section 
6.2.5) were used and the mAbs (see section 6.2.4) were preincubated with AT (1:1) for 
30min at room temperature. No AT+PII-UMP+α-kg (♦), AT+PII-UMP+α-kg (□), 
AT+PII-UMP+α-kg+6A3 (+), and AT+PII-UMP+α-kg+27D7 (*). All assays were 
performed in duplicate and with ATwt as a reference. Error bars have not been shown on 
the curves as they hinder visual inspection. The standard error range for all the curves is 
generally <0.4.           169 

 
Figure 6.10 Adenylylation activity of ATase and AT-C518 in the presence of C 

domain mAbs 6A3 and 27D7. These assays show the changes in activity of (a) 
ATase and (b) the C-terminal truncation construct AT-C518 in adenylylation by 
measuring the production of γ-glutamyl hydroxamate by GS with C domain mAbs 6A3 
and 27D7 present. Standard assay conditions (see section 6.2.5) were used and the 
mAbs (see section 6.2.4) were preincubated with AT/AT-C518 (1:1) for 30min at room 
temperature. No AT/AT-C518+PII+gln (♦), AT/AT-C518+PII+gln (□), AT/AT-C518-
PII+gln (∆), AT/AT-C518+PII+gln+6A3 (+), and AT/AT-C518+PII+gln+27D7 (*). All 
assays were performed in duplicate and with ATwt as a reference. Error bars have not 
been shown on the curves as they hinder visual inspection. The standard error range for 
all the curves is generally <0.6.         170 

 
Figure 6.11 Inhibition of C-terminal truncation construct activity by C domain 

mAbs 6A3 and 27D7 in adenylylation with no glutamine. These assays 
show the changes in activity of the C-terminal truncation constructs (a) AT-C518 
(purified; see section 6.2.1), (b) AT-C396 (purified; see section 6.2.1), and (c) AT-C340 
(cell lysate; see section 6.2.1) in adenylylation with no gln. Activity was measured by 
the production of γ-glutamyl hydroxamate by GS with C domain mAbs 6A3 and 27D7 
present. Standard assay conditions (see section 6.2.5) were used and the mAbs (see 
section 6.2.4) were preincubated with the constructs (1:1) for 30min at room 
temperature. No construct+PII+gln (♦), construct+PII+gln (□), construct+PII-gln (∆), 
construct+PII-gln+6A3 (○), and construct+PII-gln+27D7 (*). All assays were 
performed in duplicate and with ATwt as a reference. Error bars have not been shown on 
the curves as they hinder visual inspection. The standard error range for all the curves is 
generally <0.4.           171 

 
Figure 6.12 Schematic representation of the different conformations of ATase in 

adenylylation and deadenylylation. The activity results from the adenylylation 
and deadenylylation assays shown in Figures 6.4 and 6.5 have been summarised in this 
diagram. Uncomplexed ATase has a “closed” conformation (Jaggi, 1998) and has 
minimal activity in either assay. Removal of the N or R domains gives rise to 
polypeptides with similar adenylylation activity to PII complexed ATase and removal 
of the R+C domain gives rise to a polypeptide, which has activity independent of PII-
UMP in deadenylylation. Addition of PII to the adenylylation assay or PII-UMP to the 
deadenylylation assay causes a shift in the position of the N domain relative to the C 
domain and ATase adopts the “open” conformation (Jaggi, 1998). The complexed 
ATase is then capable of adenylylating GS or deadenylylating GS-AMP, depending on 
the other effectors present in the assay. The adenylylation active site is shown in white 
and is accessible to GS in all the conformations except the uncomplexed “closed” 
conformation and the deadenylylation active site shown in cyan is accessible to GS-
AMP in all conformations except the uncomplexed “closed” conformation.    175 
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Figure 7.1 Structure of the deadenylylation domain of ATase. X-ray crystal structure of 
the AT-N440 truncation construct of the ATase protein from E. coli. (Xu et al., 2003b). 
The three important residues from the McLoughlin (1999) suite of mutations have been 
highlighted. D173 and D175 hold the catalytic Mg2+ ion in position and N169 is 
probably involved in correct positioning of the phosphate group. These residues cluster 
in the probable GS-AMP binding site within the red ring.      179 

 
Figure 7.2 Generation of the new ATase mutants. (a) PCR product (see section 7.2.1) and 

(b) Nde I digested plasmid (see section 7.2.1) visualised by agarose gel electrophoresis 
(see section 2.2.3.1) for AT:W452P, AT:W456A and AT-N440:N169G.     185 

 
Figure 7.3 Mutated residue sequence data for new ATase mutants. Sequence data 

generated by automated sequencing (see section 2.2.4.3) for the (a) AT:W452P, (b) 
AT:W456A and (c) AT-N440:N169G mutants. The original ATase glnE sequence is 
shown in black.           185 

 
Figure 7.4 Over-expression and solubility test by Western blot analysis of the three 

new ATase mutants. Western blot of 12% SDS PAGE gel (see section 2.2.6.5) of 
whole cell extracts (wc) and cell-free lysates (sn) using a mixture of purified mAbs 
5A7, 6B5 and 27D7 (see section 2.2.9.4.2).        186 

 
Figure 7.5 Glutamine effects in deadenylylation using ATase and various 

adenylylation active site mutants. This graph shows, the deadenylylation rate 
inhibition profiles for ATwt and adenylylation active site mutants with various 
concentrations of gln added to the standard deadenylylation assay (see section 7.2.2). 
Activity was measured by the production of γ-glutamyl hydroxamate by GS-AMP. All 
assays were performed in duplicate and with ATwt protein as a reference. The initial rate 
curves have been fitted with a linear regression using Microsoft Excel. The initial rates 
for all the proteins have been expressed as a proportion of their standard activity.    191 

 
Figure 7.6 α-Ketoglutarate binding to PII and ATase. PII and ATase (10µM) were 

assessed for α-kg binding (see section 7.2.3) using radio-labelled 14C α-kg in the 
presence of ATP (2mM). PII (blue) and ATase (red).       192 

 
Figure 7.7 α-Ketoglutarate effects in adenylylation using PII and GlnK as the 

effector-protein. This curve shows, the adenylylation rate profiles for PII and GlnK 
with various concentrations of α-kg added to the standard adenylylation assay (see 
section 7.2.2). Activity was measured by production of γ-glutamyl hydroxamate by GS. 
All assays were performed in duplicate and with PIIwt protein as a reference. The initial 
rate curves have been fitted with a linear regression using Microsoft Excel. The R2 
coefficient is generally >0.9. The stimulated initial rates for all the effector-proteins 
have been expressed as a proportion of their standard stimulated activity.    196 

 
Figure 8.1 Diagrammatic representation of the proposed new adenylylation 

cascade model.          211 
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