APPENDIX A1

Rock sample locations and descriptions

Pb Isotope																	Х												Х					
Nd Isotopes	Х			Х			Х	Х					Х			Х				Х											Х		Х	
Sr Isotopes	Х			Х			Х	Х					Х			Х				Х											Х		Х	
${}^{40}\mathrm{Ar}/{}^{39}\mathrm{Ar}$	Х						Х	Х					Х							Х											Х		Х	
REE	Х	Х	Х	Х	X	Х	Х	Х	Х	×	Х	Х	X	Х	×	Х		x	×	Х	×									Х	Х	Х	X	
s Traces	Х	Х	Х	Х	x	Х	Х	Х	Х	x	Х	Х	X	Х	x	Х		x	x	Х	x									Х	Х	Х	Х	
Major	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	X	Х	х	Х		Х	х	Х	х									Х	Х	Х	Х	
XRD																							Х	х										
Microprobe	Х	Х	Х	Х		Х	Х	Х					Х			Х			Х	Х	Х									Х	Х	Х	Х	
Thin Section	Х	Х	Х	Х	X	Х	Х	Х	Х	x	Х	Х	X	Х	x	Х	X	X	x	Х	x	Х	Х	x	x	Х	x	Х	Х	Х	Х	Х	x	Х
Location	El Galeno Region	Mishacocha	Aurora Patricia	La Carpa Region	Michiquillay North	Minas Carpa (CP012)	Chailhuagon	Chailhuagon	Hualyamachay Sur	Michiquillay Prospect	El Galeno GN-46 (57m)	El Galeno GN-37 (310m)	El Galeno GN-42 (246m)	El Galeno GN-39 (432m)	El Galeno																			
Easting (m)	794204	794774	794465	796058	794720	784989	800904	801199	799321	799745	296008	796602	797582	799620	802600	791300	791250	790840	795729	795725	795725	795725	795833	796143	796143	795920	795920	795920	795920	795871	795598	795763	796044	795640
Northing (m)	9227017	9226745	9225913	9226680	9230960	9235216	9211157	9228798	9224490	9224565	9224321	9224008	9223743	9223187	9230300	9232500	9232130	9235440	9221145	9221140	9221140	9221140	9221046	9221594	9221594	9221335	9221335	9221335	9221335	9228264	9229000	9228695	9228700	9228780
Sample No.	S-16	S-26	S-55	S-57	S-18	S-87	S-11	S-38	S-35	S-36	S-54	S-58	S-59	S-60	S-MCarpa	S-Chail	H-1 (152m)	S-Hual	S-H22 (244)	S-H22(176)	S-H22(180)	H-22 (176m)	I-23 (269m)	L-17.5 (180m)	L-17.5 (288m)	J-20 (170m)	J-20 (178m)	J-20 (333m)	J-20 (347m)	S-T1	S-T2	S-T3	S-T4	GA-04 (192m)
JCU No.	67720	67721	67722	67723	67724	67725	67726	67727	67728	67729	67730	67731	67732	67733	67734	67735	67736	67737	67738	67739	67740	67741	67742	67743	67744	67745	67746	67747	67748	67749	67750	67751	67752	67753

												-		
JCU No.	Sample No.	Northing (m)	Easting (m)	Location	Thin Section	Microprobe	XRD M	lajors 7	[races]	REE ⁴	$^{0}\mathrm{Ar}/^{39}\mathrm{Ar}$	Sr Isotopes	Nd Isotopes P	b Isotope
67754	GN-41 (258m)	9228597	795899	El Galeno	Х									
67755	GN-42 (96m)	9228695	£9 <i>L</i> 56 <i>L</i>	El Galeno	Х									
67756	GN-42 (465m)	9228695	£9 <i>L</i> 56 <i>L</i>	El Galeno	Х									
67757	GN-39 (400m)	9228700	796044	El Galeno	Х									
67758	GN-39 (166m)	9228700	796044	El Galeno	Х									Х
67759	GN-39 (432m)	9228700	796044	El Galeno	Х									Х
67760	GN-39 (436m)	9228700	796044	El Galeno	Х									
67761	GA-04 (174m)	9228780	795640	El Galeno	Х		Х							
67762	GN-39 (215m)	9228700	796044	El Galeno	Х		Х							
67763	GN-43 (14.9m)	9228400	195950	El Galeno	Х		Х							
67764	GN-43 (14.9m)	9228400	795950	El Galeno	Х		Х							
67765	S-Yana	9227200	777600	Yanacocha CLL-5 (795m)	Х			Х	Х	Х		Х	Х	Х
67766	Yana	9227200	777600	Yanacocha CLL-5 (569m)	Х									Х
67767	S-46	9233180	795720	Cerro Perol East	Х	Х		Х	Х	Х	Х	Х	Х	
67768	S-50	9233920	792940	Cerro Perol	Х			Х	Х	Х				
61769	S-28	9225911	814373	Cerro Montana	Х			Х	Х	Х		Х	Х	
67770	S-31	9223290	815725	Cerro Montana	Х	Х		Х	Х	Х	Х	Х	X	
67771	S-32	9221344	807480	Cruz Conga	Х	Х		Х	Х	Х	Х	Х	Х	
67772	S-21	9231380	797708	La Carpa Region	х	x		Х	Х	Х	Х	Х	X	
67773	S-61	9218321	762720	Y anacocha Rd	Х			Х	Х	Х	Х	Х	X	
67774	S-64	9219230	764453	Yanacocha Rd	х	x		Х	Х	Х				
67775	S-66	9219490	766253	Yanacocha Rd	х			Х	Х	Х				
67776	S-68	9218935	766313	Y anacocha Rd	Х			Х	Х	Х				
67777	S-MC4	9229470	788645	Minas Conga Region	х	x		Х	Х	Х	Х	Х	Х	
67778	S-63	9219560	764260	Yanacocha Rd	Х			Х	Х	х				

ROCK DESCRIPTIONS FOR GEOCHEMICAL SAMPLES

MAFIC DYKES

Sample 18 (Galeno)

In thin section, this sample is characterised by abundant acicular or needle-like feldspar grains. The feldspar grains are plagioclase, approximately 0.2 mm in length and display minor twinning. No zoning in the plagioclase grains was observed. The finegrained, acicular feldspar have a trachytic texture appearance and are slightly aligned. Minor clinopyroxene grains and possibly hornblende are evident but are strongly replaced by carbonate plus chlorite. Calcite infill is evident in amygdule-like features that are angular in shape. Calcite infill is rimmed by light green chlorite. Amygdules are suggestive of suggest of shallow level emplacement. This idea of a shallow level emplacement is supported by the trachytic texture of the matrix, possible the result of a flow system. The groundmass has been strongly-pervasively replaced by secondary carbonate and chlorite. Chlorite alteration is pervasive throughout the sample. Very fine-grained opaque minerals, dominantly magnetite, are euhedral-subhedral shape and abundant. This sample is inferred to be a gabbroic dyke.

Sample 55 (Galeno)

In hand specimen, the sample contains cloudy white feldspar phenocrysts that display minor sericite replacement, 0.5-2.5 mm in length and euhderal-subhedral. Pyroxene grains appear moderately altered, are dusty in appearance and 0.6-3.0 mm in length. Veins composed of feldspar-calcite crosscut all other features. The matrix is dark grey to black in colour.

In thin section, the plagioclase phenocrysts are dominantly euhedral, display both zoning and twinning features and exhibit minor-moderate sericite replacement. Sericite alteration occurs toward the cores of the feldspar grains. Clinopyroxene phenocrysts exhibit primary euhedral grain boundaries, however the grains have undergone moderate-pervasive sericite replacement. Sericite replacement is strongest along and around intragranular fractures. Hornblende phenocrysts are rare and have jagged grain boundaries. The groundmass is composed of fine-grained plagioclase grains that display twinning and weak zoning textures. Strong-moderate carbonate and sericite replacement has overprinted some of the primary groundmass. Medium-grain magnetite is also present, as well as very weak chalcopyrite mineralisation. This sample is inferred to be a hornblende gabbroic dyke.

Sample 57 (Galeno)

This rock is characterised by coarse (2-8 mm) equigranular feldspar grains that are generally clear-cloudy white, 1-2 mm and mostly euhedral-subhedral. Pyroxene grains are \sim 2 mm in size, dominantly anhedral and appear in close association with chlorite minerals.

In thin section, the holocrystalline sample is dominantly composed of euhedralsubhedral plagioclase phenocrysts that display both twining and zoning textures. Large, phenocryst-size, plagioclase grains are euhedral in shape, whereas the smaller grains are dominantly anhedral. Both plagioclase grain populations exhibit minor-moderate sericite replacement that is commonly well developed along fracture planes. Clinopyroxene phenocrysts are subhedral-euhedral and may display simple twinning. Grain boundaries between pyroxene grains are undulose. Medium-grained magnetite grains are often angular to euhedral. Chlorite alteration is evident throughout the sample and appears to have preferentially replaced certain minerals. Pervasive chlorite alteration of the minerals has made is difficult to determine its primary composition. Weak secondary muscovite is also present. Minor carbonate alteration is generally found within late fractures as an infill mineral. This rock is inferred to be a gabbroic diorite dyke.

Sample 16 (Galeno)

This weakly porphyritic sample contains phenocrysts of clinopyroxene and plagioclase. The groundmass is medium-grained and composed of angular feldspar grains. Plagioclase grains display both simple twinning and oscillatory zoning. Some grains have been affected by minor-moderate sericite replacement. Some of the clinopyroxene grains display zoning and twinning and contain feldspar \pm Fe-Ti oxides. Grains are generally euhedral-subhedral. Rare hornblende phenocrysts are evident. Minor sericite-carbonate-chlorite alteration is evident, and contains minor amounts of pyrite and chalcopyrite. Overall the sample is generally fresh with a weak propylitic alteration and is inferred to be a hornblende gabbro.

Sample 87 (Laguna Mishacocha)

In hand specimen this sample is characterised by feldspar phenocrysts that are $\sim 0.3-2.0$ mm in size, euhedral-subhedral in shape and generally clear in appearance. Relict mafic minerals(?) are evident, often bordered by a magnetite or hematite and probably undergone strong alteration. Wormy silicic vein(s) are evident, these are $\sim 1-2$ mm thick and are crosscut by late brittle fractures. The fractures appear to be infilled with hematite and have a thin selvage of magnetite. The matrix is black-dark grey and trachytic in appearance.

In thin section, there are two populations of plagioclases, a phenocryst group (greater than 1 mm) that are subhedral in shape, display both twinning and zoning textures and show evidence of weak sericite replacement towards the cores. A second population of feldspar grains are less than 1 mm in size and define the groundmass. The feldspar groundmass grains are elongate-acicular in shape, subhedral-anhedral and exhibit minor zoning textures. Euhedral-subhedral, fine-grained pyroxene grains also define the groundmass. The groundmass has undergone moderate carbonate and sericite replacement. Fine-grained primary magnetite is present, along with weak chalcopyrite

mineralisation. No quartz grains were observed and possible mafic minerals are pervasively replaced. This sample is inferred to be a gabbroic diorite.

Sample 26

In hand sample, this rock contains acicular plagioclase grains (0.5 mm) and calcite amygdules. The sample is dark grey to dull green. The dull green appearance suggests chlorite alteration. This is confirmed in thin section, where the groundmass has been partially replaced by chlorite. Plagioclase grains display simple twinning and oscillatory zoning. Chlorite and minor calcite has pervasively replaced pyroxene(?) grains that are ~0.5 mm in length. Overall, the sample displays a moderate-strong chlorite alteration.

INTRUSIVE ROCKS

Sample 28 (Co Montana)

This porphyritic sample contains phenocrysts of plagioclase and hornblende, with minor amounts of magnetite, apatite and zircon. Plagioclase phenocrysts are euhedral-subhedral, display oscillatory zoning and twinning features, some grains display evidence of K-feldspar and minor sericite replacement. Hornblende phenocrysts range from euhedral-subhedral and show moderate chlorite replacement around the rims or along fracture planes. Accessory minerals include fine to medium-grained magnetite, apatite and zircon, although no quartz grains are evident. The groundmass has a trachytic-mosaic texture and feldspathic composition. Minor amounts of sericitecarbonate-chlorite alteration are evident, especially within the groundmass. The sample is inferred to be hornblende diorite.

Sample 31 (Co Montana)

This sample has a crowded porphyritic texture and contains phenocrysts of plagioclase, clinopyroxene and hornblende. Minor amounts of apatite and zircon are also present. The plagioclase grains display moderate-strong sericite-carbonate-chlorite alteration and some of the grains display oscillatory zoning and twinning. Subhedral-euhedral hornblende grains are moderately cracked and contain Fe-Ti oxide plus feldspar inclusions. Clinopyroxene grains are generally fractured with moderate-minor sericite replacement. Overall the sample contains moderate-strong chlorite-sericite alteration and is classified as a hornblende diorite.

Sample 11 (Aurora Patricia)

This moderately crowded porphyritic sample contains phenocrysts of hornblende and plagioclase that are set in a feldspathic groundmass. Euhedral-subhedral hornblende grains commonly contain small feldspar and/or magnetite inclusions, and are light green to green in colour. Some hornblende grains display fractures and weak chlorite alteration. Plagioclase grains display oscillatory zoning and simple or crosshatched twinning, some grains have minor fractures. Rounded quartz grains are rare. Sericitecarbonate replacement of plagioclase grains is particularly evident near the core or along fractures. The sample also contains minor apatite and zircon grains, as well as a moderate amount of medium-fine grained magnetite as accessory minerals. Overall, the sample appears to be generally unaltered and is inferred to be a hornblende granodiorite.

Sample 38 (La Carpa)

This sample is characterised by large feldspar phenocrysts, 1-4 mm in size, that are cloudy white-clear in colour and subhedral-anhedral. Euhedral hornblende grains are moderately abundant, mostly 1-2mm in length, acicular in shape and contain minor inclusions. Quartz grains are sub-anhedral, generally well rounded and ~2 mm in size. The matrix is light grey, feldspathic in appearance.

In thin section, plagioclase grains exhibit oscillatory zoning and twinning are generally unaltered. Some plagioclases contain intragranular fractures with minor carbonate and muscovite replacement. Hornblende grains are a yellowish green to green in colour, in parts show replacement textures that are associated with fractures, and grains often have chlorite, hematite and magnetite spots around the rim. Most quartz grains are well rounded and have a fine-grained recrystallised boundary. Biotite phenocrysts have a piokilitic texture with inclusions of feldspar, light brownish greendark brown in colour and also rimmed with hematite and magnetite, they also exhibit minor chloritic replacement. Fine apatite and zircon crystals also occur throughout the slide. The sample is relatively unaltered, although contains very minor amount of sericitic, carbonate and chlorite alteration.

Sample 35 (Michiquillay North)

This sample is characterised by moderately abundant cloudy feldspar phenocrysts, they are generally subhedral, 0.7-4.0 mm in size. Hornblende phenocrysts occur in two populations, small (0.3 mm) dominant population and a larger (~2 mm) less abundant population. Quartz grains are generally rounded and range is size from 0.5-2.0 mm. The matrix is grey to light grey in colour.

In thin section, plagioclase grains show twinning and oscillatory zoning, occasionally have minor fracture and in places have minor-moderate sericitic alteration. Hornblende grains are mostly unaltered and green-dirty brown in colour. Quartz grains are often rounded, some grains contains good fluid inclusion trails, dominantly brine and vapour inclusions and have a thin recrystallised rim. Others minerals include minor amounts of apatite, zircon and magnetite. The occurrence of carbonates and epidote indicates minor propylitic alteration. This sample is inferred to be a hornblende granodiorite.

Sample 36 (Michiquillay North)

In thin section, plagioclase grains show strong zoning and twinning, grains are generally euhedral with minor intragranular fractures filled with sericite, chlorite and calcite. Relict biotite and hornblende grains have undergone intense chlorite and carbonate alteration with only the original grain shape preserved, plus very fine-grained opaque minerals are located within zones of chlorite alteration. These strongly altered grains appear to have a higher proportion of opaque minerals in comparison with the rest of the sample. Other minerals present within the sample include epidote, apatite, zircon and minor quartz (with few inclusions). Minor amounts of subangular opaques are found throughout the sample and range from fine to medium-grained. The matrix is equigranular, of feldspathic composition and shows very little evidence of alteration (possibly some K-feldspar alteration). The main alteration features are calcite and chlorite replacement that is mostly restricted to hornblende and biotite grains. This sample is a hornblende-biotite granodiorite.

Sample 54 (Michiquillay North)

Sample is characterised by a moderate abundance of sub-euhedral feldspars, dominantly with a cloudy to white appearance and ~0.5-2 mm in length. Mafic minerals are present in two populations a) (~3mm) euhedral, slightly dirty population with small inclusions possibly biotite and b) a smaller (~0.5mm) population with euhedral-subhedral boundaries, probably hornblende. Rounded quartz grains occur and are ~3-5mm in diameter. The matrix is a clear, light grey and feldspathic.

In thin section, the plagioclase grains are moderate-strongly replaced by sericite and carbonate material, with replacement occurring both along the grain boundaries as well as in the core. Biotite and hornblende grains have been completely replaced by carbonate and chlorite minerals, with only the original grain boundary remaining. Quartz crystals are generally rounded, some with embayment features and in parts contain small brine-vapour fluid inclusion and trails (although not particularly large or abundant inclusions). Small, euhedral fine-grained apatite and zircon crystals are also apparent within the rock. The matrix is feldspathic and contains minor amounts of carbonate replacement. There also rare amygdules with calcite infill. The rock has a porphyritic texture and has undergone strong sericite-chlorite-carbonate alteration. Muscovite alteration is dominantly associated with the replacement of plagioclase, while chlorite and carbonate alteration appear to be have replaced biotite and hornblende grains. Minor amounts of opaques (magnetite) are present. This is an altered hornblende-biotite granodiorite.

Sample 58 (Michiquillay North)

Moderately abundantly feldspar phenocrysts (0.7-4 mm) are clear-cloudy white in colour and sub-euhedral. Mafic grains are subhedral-euhedral, often have a dusty black colour and range in size from 0.4-2 mm. Occasional quartz grains are rounded and ~1.5-2.0 mm in diameter. The matrix is a dark grey-black. In thin section, the porphyritic rock has euhedral plagioclase phenocrysts showing strong oscillatory zoning. Most grains are unaltered although some grains show sericitic replacement. A minor amount of carbonate infill is also apparent in some cores. Quartz grains are unaltered and are often rounded-globular in shape. Grain boundaries often have a fine-grained recrystallised rim and crystals also contain small fluid inclusion trails (inclusions are mostly brine or brine-vapour). Hornblende grains have been pervasively replaced by chlorite-carbonate-sericite alteration with most retaining their euhedral crystal shape. Grains often have a rim of magnetite and/or hematite. Randomly throughout the matrix are regions rich in carbonate minerals (probably calcite), epidote, apatite and fine-medium grained magnetite. The matrix is a very finegrained feldspathic composition. This sample is moderately altered and has undergone carbonate-chlorite-sericite alteration. The sample is a inferred to be a hornblende granodiorite.

Sample 59 (Michiquillay North)

This sample is characterised by cloudy white-clear feldspar phenocrysts, 0.5-4.0 mm in size and subhedral in shape. Quartz grains are rounded and range in size from 0.3-3.0 mm. Biotite grains are evident (~5 mm). Hornblende crystals are moderately abundant, acicular and elongate in shape, euhedral, 0.8-2.5 mm in size with the larger grains occasionally having inclusions. The matrix is a light grey colour with a slightly green tinge.

In thin section, the plagioclase phenocrysts exhibit some intracrystalline fractures and are weakly-strongly replaced by sericite. Grains are dominantly euhedral, show good oscillatory zoning plus multiple twinning, and may contain minor-moderate sieve textures toward the rim. Abundant hornblende grains are euhedral-subhedral, green-yellowish green in colour and occasionally show zoning. Quartz grains are globular in shape, occasionally contain embayments and have very small, rare inclusions. Biotite grains have been pervasively replaced by chlorite and muscovite but retained their original crystal shape. The replaced grains often have a fine-grained magnetite/hematite rich rim. Minor amount of clinopyroxene, apatite and zircon are also evident in thin section. The matrix is of felspathic composition. This sample is inferred to be a hornblende-biotite granodiorite.

Sample 60 (Michiquillay North)

In hand specimen, this sample is characterised by subhedral-euhedral feldspar grains, dominantly cloudy white in colour and range in size from ~ 0.5 -3.0 mm in length. Minor amounts of mafic minerals are present, grains are generally very small (~ 0.3 mm) in size but have a wide distribution throughout the sample. Grains have a dull black appearance. Minor amounts of quartz and fine-grained pyrite are also present. Pyrite grains occur both within other minerals and as individual spots throughout the matrix. The matrix is a light grey in colour with a slightly green tinge.

In thin section, plagioclases contain abundant intragranular fractures that are filled with carbonate, muscovite and occasionally epidote. Plagioclase grains are euhedral and show moderate twinning. Rounded quartz grains are relatively common, subhedral in shape, medium to coarse grained and generally clean with small inclusions (brine-vapour inclusions, rare salt crystals). Hornblende grains have been totally replaced by chlorite and calcite. Fine magnetite crystals often rim the replaced hornblende grains. The sample also contains large calcite crystals that have an infill appearance. Other minerals evident within the slide are epidote and minor amounts of sulphide minerals. The sample has undergone strong chlorite and carbonate alteration. It is inferred to be a hornblende granodiorite.

VOLCANIC ROCKS

Sample 21 (La Carpa)

Sample contains moderate-abundant feldspar grains that are generally 0.5-3 mm, subhedral, cloudy white-dirty green in colour. Hornblende grains are euhedral, occasionally subhedral in shape, range in size from 0.5-7.0 mm, larger grains may contain fine inclusions of white grains (possibly feldspar). Quartz phenocrysts are rounded in shape and \sim 2 mm in size. The matrix is a greenish grey colour with patches of abundant green minerals (probably epidote or chlorite).

In thin section, the sample has a crowded porphyritic texture with phenocrysts of plagioclase and hornblende. Plagioclase crystals are moderately altered showing varying degrees in sericitic replacement and intragranular fractures, fractures are often filled with muscovite and epidote, some grains have a vague melting rim with twinning and oscillating zoning is common. Hornblende grains are green-dark green in colour, with occasional inclusions of feldspar and opaque minerals. Clinopyroxene and apatite grains are also evident. The matrix is feldspathic and has a slightly trachytic texture. Overall, sample 21 is a crowded porphyritic volcanic that has undergone a moderate chlorite-sericite-carbonate alteration and is inferred to be a hornblende andesite.

Sample 32 (Cruz Conga)

In hand sample, this weakly porphyritic volcanic sample contains plagioclase, hornblende and pyroxene phenocrysts that are set within a pinkish red matrix. The plagioclase grains are generally clear whilst the hornblende grains are dusty-dull in appearance.

In thin section, the plagioclase phenocrysts are mostly euhedral-subhedral in shape, display simple-multiple twinning features and in parts has been replaced by Kfeldspar. Some of the grains have undergone moderate muscovite alteration. Euhedral hornblende phenocrysts have a brown and have hazy iron oxidations rim characteristic of calc-alkaline igneous rocks. Opaque rims result from the formation of magnetite by oxidation of iron in ferro-magnesium minerals, which is common for hornblende in volcanic rocks. Clinopyroxene grains are subhedral-euhedral in shape, weakly pleochroic from light orange to light yellow, some display oscillatory zoning and twinning, and occur both freely within the groundmass as well as inclusions in hornblende phenocrysts. The sample contains fine to medium-grained, euhedral apatite minerals that are slight blue in colour. The sample also contains minor-moderate amounts of magnetite. The groundmass has a very fine-grained trachytic texture and is of feldspathic composition. The sample displays very weak chlorite alteration. The sample is inferred to be basaltic andesite volcanic rock.

Sample 50 (C^o Perol)

In thin section the slide exhibits a chlorite-epidote vein that has resulted in an alteration selvage. Away from the vein and related features, feldspar phenocrysts are euhedral and range from little-intense sericite replacement. Feldspar grains close to the veins have a considerably strong alteration appearance with intense-pervasive sericite-chlorite replacement. Throughout the entire slide, hornblende grains have been totally replaced by chlorite and minor amounts of carbonate material, but the original grain shape has been preserved. Amygdules are often filled with carbonate material and range in size from 4-1mm in length. The matrix is felspathic in composition with slight-moderate chlorite alteration and has a quasi-trachytic texture. The matrix texture as well as the presence of amygdules is suggestive of a volcanic or extrusive system. The chlorite-epidote vein is ~0.3mm thick and resulted in an alteration selvage that ranges in thickness from 1-5mm thick. The vein is dominantly composed of epidote that appears to have been partially destroyed by late calcite infill. The selvage is epidote and chlorite rich, dirty in appearance and destroyed most the original wall rock features. Very little opaque minerals are found within or around the vein-selvage area.

Sample 61 (Cajamarca)

Sample contains abundant sub-euhedral feldspar grains of 0.5-2 mm size, whiteclear in colour with rare inclusions of a dark mineral. Pyroxene minerals are also present, rose in colour, euhedral and ~1 mm in size. Hornblende grains are dominantly acicular, 1-4 mm, occasional inclusions are evident and few grains have a corroded hematite rim. The sample is brown in colour with abundant feldspar and pyroxene grains. Calcite rich fragments are also present and have a dark rim.

Eu-subhedral plagioclase grains show strong twinning and zoning, grains are abundant and most are unaltered although some have a sericitic rim. Pyroxene minerals are moderately abundance, occasionally exhibit zoning and twinning, are euhedralsubhedral in shape. Few hornblende grains are present, often display a thick hematite rim and are acicular in shape. The matrix is composed of fine, elongate felspar minerals and has a slight trachytic texture. This sample is a hornblende andesite.

Sample 64 (Cajamarca)

In outcrop exposure and in hand specimen the sample is characteristic of a porphyritic basalt lava flow. Subhedral-euhedral feldspar phenocrysts range in size from

0.5-3 mm, with the larger grains (\sim 3-5 mm) having a cloudy white colour and the smaller grains being generally translucent. Mafic grains are dominantly subhedral, 1-5 mm, often contain inclusions and have a corroded hematite rim. Minor amounts of pyroxene is visible, they are often rose-olive in colour and \sim 1-2 mm in size. The sample is dark-dirty brown in colour and in places small feldspar grains appear to be aligned. Flow layers vary in thickness from millimetres to several centimetres.

In thin section, abundant plagioclase grains are mostly clean, occasionally with minor sericite, often show good twinning and zoning. Some grains are slightly fractured and may have thin boiling rims. Clinopyroxene are dominantly fine grained (~1 mm or less in size, rarely larger) and lack twinning or zoning textures. Hornblende grains have a corroded rim of magnetite and/or hematite. Often they appear poikilitic in texture with numerous feldspar and occasional pyroxene inclusions. The matrix is feldspathic in composition and granular in appearance (not necessarily trachytic). Flow layer boundaries are subtle to discrete and evident by minor changes in the appearance of the matrix and abundance of phenocrysts. These rocks are inferred to be hornblende andesite flows.

Sample 66 (Cajamarca)

In hand specimen the rock is dark brown in colour, has a weak fine-grained porphyritic texture and appears to be part of a possible massive flow unit. Few phenocrysts of mafic minerals are present and ~2-6 mm long and appear to be slightly altered with a corroded hematite rim. Feldspar grains are generally equigranular and ~1 mm in size. The sample contains a moderate amount of anastomosing fractures that are possibly filled with quartz-feldspar-calcite type minerals.

In thin section, plagioclase grains are euhedral-subhedral, mostly unaltered although minor-moderate sericite replacement is evident. There is a semi-preferred orientation of grains and most have a strong zoning or twinning texture. Hornblende grains have a thick hematite rim but are generally have a fresh core. Minor amounts of fine-grained clinopyroxene grains are present, they are generally euhedral and in places have a thin corroded rim. The matrix is dominantly composed of felspathic material with minor amounts of clay. Its texture is granular-glassy, possibly tuffaceous. This is inferred to be a hornblende andesite.

Sample 68 (Cajamarca)

In this sample feldspars are characterised by a large phenocryst population that is 4-6 mm in size, clear-cloudy white and dominantly euhedral. The smaller population is more abundant, ~1 mm or smaller in size, elongate and euhedral in shape, appear to have a preferred orientation and a light hazy white in colour. Hornblende grains are often euhedral, ~2 mm in length, commonly contain small white inclusions and have a brown hematite rim. The matrix is a dirty grey-brownish grey. In thin section, euhedral plagioclase grains are clear-dusty in appearance, occasional zoning and twinning is apparent, grains show minor sericite alteration and the smaller grains have a slight-moderate alignment. Pyroxene grains are often fine grained (~0.5 mm or smaller), mostly clean and subhedral-euhedral in shape. Some pyroxene grains may have feldspar or magnetite overgrowths. Corroded hornblende phenocrysts have a slight piokilitic texture with fine grains of feldspar. The matrix is of feldspathic composition and is generally dirty in appearance.

APPENDIX A2

Laboratory analytical procedures for ⁴⁰Ar/³⁹Ar analyses

LABORATORY ANALYTICAL PROCEDURES

New Mexico Geochronology Research Lab

NMGRL Analytical Procedures - Hornblende separates were obtained using heavy liquid separation and handpicking techniques. The samples were loaded into a Al disc and irradiated for seven hours in the D-3 position at the Nuclear Science Centre reactor, Texas A&M University. The irradiated samples were monitored with a 27.84 Ma sanidine NMGRL standard (FC-1).

Irradiated hornblende grains were placed in a Mo furnace crucible and stepheated for three minutes by a 50W CO₂ laser at the NMGRL. During heating, gases evolved from the samples heated in the furnace react with the first stage getter, i.e. a SAES GP-50 getter heated at 450°C. Following heating the gas expanded into a second stage for two minutes. The second stage is comprised of a SAES GP-50 getter operated at 20°C and a tungsten filament operated at ~2000°C. During second stage cleaning, the furnace and the first stage are pumped out. After gettering in the second stage, the gas is expanded into a MAP-215-50 mass spectrometer. Gases evolved from the samples heated in the laser are expanded via a cold finger operated at -140° C directly into the second stage. Following cleanup, the gas in the second stage and laser chamber is expanded in the mass spectrometer for analysis. Isotopes are detected on a Johnston electron multiplier operated at ~2.1 kV. Blanks for the furnace are run every three to six heating steps and between every four analyses for the laser system.

Argon Geochronology Laboratory (University of Queensland)

Hornblende and biotite separates were obtained using heavy liquid separation and handpicking techniques Ten to twenty pure grains from each sample were loaded into irradiation disks along with Fish Canyon (nominal age of 28.02 Ma) and Cobb Mountain sanidine (nominal age of 1.194 Ma) standards (Renne *et al.*, 1998). The disks were wrapped in Al-foil, vacuum sealed in silica glass tubes and irradiated for 14 hours at the B-1 CLICIT facility at the Radiation Centre, Oregon State University, USA. Sample and flux monitor irradiation geometry followed those of Vasconcelos (1999). After a two-month cooling period, the samples were analysed by the laser incremental-heating 40 Ar/ 39 Ar method at the UQ-AGES (University of Queensland Argon Geochronology in Earth Sciences) laboratory following procedures detailed by Vasconcelos (1999). Air pipettes and full system blanks were analysed before and after each grain, yielding 40 Ar/ 36 Ar discrimination values ranging from 0.9845 ± 0.0026 to 1.0139 ± 0.0022, with an average value of 0.9996 ± 0.0024. Average blank value for the analyses was 0.0069 ± 0.0001 nA of current in the electron multiplier. All dates are reported using 5.543 x 10⁻¹⁰ a-1 as the total decay constant for 40^K (Steiger and Jäger, 1977) and the following values for the reactor correction factors: (2.64 ± 0.02) x 10⁻⁴ for (36 Ar/ 37 Ar)Ca, (7.04 ± 0.06) x 10⁻⁴ for (39 Ar/ 37 Ar)Ca and (8 ± 3) x 10⁻⁴ for (40 Ar/ 36 Ar)K. J-factors for each sample are shown in Appendix A3.

References

Renne, R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L. and DePaolo, D.J., 1998. Intercalibration of standards, absolute ages and uncertainties in ⁴⁰Ar/³⁹Ar dating. Chemical Geology, 145: 117–152.

Steiger, R.H. and Jäger, E., 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36: 359-362.

Vasconcelos, P.M., 1999. ⁴⁰Ar/³⁹Ar geochronology of supergene processes in ore deposits. In: J.P. Richards and R.M. Tosdal (Editors), Structural controls on ore genesis. Society of Economic Geologists Reviews, 14: 157-181.

APPENDIX A3

⁴⁰Ar/³⁹Ar incremental step heating data

ID	Temp	³⁷ Ar/ ³⁹ Ar	⁴⁰ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	$^{39}Ar_{K}$	K/Ca	⁴⁰ Ar	³⁹ Ar	Age	Error (1 σ)
	(°C)			$(x \ 10^{-3})$	(x 10 ⁻⁶ mol)		(%)	(%)	(Ma)	(Ma)
					. ,		(,*)	(,*)	(1124)	()
21 , 17.19	9 mg hornb	lende, J=0.0	0007388							
А	5	295.60	1.998	985.70	5.72	0.26	1.5	0.9	6.00	4.50
В	10	673.60	17.930	2172.80	2.40	0.03	4.9	1.3	44.00	17.00
С	15	385.50	15.300	1207.50	1.64	0.03	7.8	1.6	40.00	14.10
D	20	66.88	14.130	124.10	6.24	0.04	46.9	2.6	41.90	1.20
E	25	37.38	6.088	20.02	41.60	0.08	85.5	9.3	42.33	0.21
F	30	34.07	5.816	8.00	118.40	0.09	94.5	28.5	42.62	0.12
G	35	33.36	5.815	5.38	181.30	0.09	96.7	57.8	42.70	0.11
Н	40	33.30	5.899	5.95	173.60	0.09	96.2	85.9	42.42	0.10
1	45	30.88	5.124	14.32	66.50	0.10	87.7	96.6	35.90	0.15
J	50	12.29	0.3/1	28.55	12.80	1.40	31.0	98.7	5.17	0.33
ĸ	50	12.34	0.177	32.33	8.12	2.90	22.2	100.0	3.04	0.49
total gas	age				618.30	0.15			40.21	0.58"
Plateau ((steps B-H)	MS	WD = 0.90		525.10	0.09		84.9	42.55	0.12*
50 0 2	1 11	1 1 0 000	07200							
59 , 0.2 n	ng nornblen	100, J=0.000	1/399	1025 10	5 72	0.12	1.0	15	16.60	5 20
A B	5 10	87.00	4.500	252.30	3.75 14.20	0.12	4.0	1.5	17.40	1.00
Б	10	40.66	2 0/3	232.30	14.20	0.11	37.1	9.2 0.4	20.00	0.50
D	20	23 73	5 124	28 71	90.60	0.17	66.0	33.1	20.09	0.50
E	25	20.75	4 868	17.56	150.00	0.10	76.4	72.4	20.02	0.14
F	30	22.70	4.568	26.33	76.50	0.10	67.4	92.4	20.39	0.15
G	35	26.55	3.526	40.73	9.92	0.14	55.8	95	19.72	0.42
Н	40	28.48	2.924	40.86	2.63	0.17	58.5	95.7	22.10	1.40
Ι	45	28.26	2.998	42.85	2.92	0.17	56.1	96.4	21.10	1.20
J	50	26.98	4.078	41.08	10.90	0.13	56.3	99.3	20.22	0.51
Κ	50	27.61	4.072	41.10	2.73	0.13	57.2	100.0	21.00	1.30
total gas	age				372.90	0.11			20.42	$0.6^{\#}$
Plateau ((stens C-K)	М	SWD = 1.7		363.00	0.11		94.8	20.61	0.14 [#]
	(~~ ···									
38 , 19.7	6 mg hornb	lende, J=0.0	0007392							
А	5	414.40	2.354	1368.70	7.29	0.22	2.4	1.0	13.50	5.60
В	10	155.10	1.174	479.50	13.90	0.43	8.7	3.0	17.90	1.70
С	15	41.41	2.033	94.10	14.30	0.25	33.3	5.0	18.31	0.50
D	20	17.92	5.023	16.38	76.30	0.10	75.3	15.6	17.99	0.12
E	25	15.64	4.804	8.64	207.80	0.11	86.2	44.7	17.98	0.07
F	30	14.60	5.357	5.79	229.00	0.10	91.3	76.6	17.77	0.06
G	35	14.16	5.435	4.27	143.00	0.09	94.3	96.6	17.80	0.06
н	40	16.03	5.132	10.30	16.70	0.10	83.7	98.9	17.88	0.21
I T	45 50	20.94	5.168	35.22	4.09	0.10	52.3 52.6	99.5	14.62	0.79
J	50	24.87 51.60	5.557	40.52	2.70	0.10	52.0 11.9	99.9 100.0	17.80 8.10	1.10
N.	50	51.00	5.050	155.50	715.00	0.10	11.0	100.0	0.10	4.70
total gas	age				/15.90	0.11			17.81	0.38
Plateau ((steps A-H)	М	SWD = 1.2		708.30	0.11		98.9	17.85	0.06"

 * = 2 σ error; J = error in neutron flux

	40 20	28 20	27 20	26 20	40	40 20			
ID	⁴⁰ Ar/ ⁵⁹ Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁰ Ar/ ³⁹ Ar	⁴⁰ Ar (moles)	⁴⁰ Ar/ ³⁹ Ar	% Rad	Age	Error (1σ)
		$(x \ 10^{-2})$	$(x \ 10^{-2})$	$(x \ 10^{-3})$	$(x \ 10^{-15})$			(Ma)	(Ma)
S 16 ha	mblanda I-	003688							
3-40, no	224.83	0.003088	0.00	0.53	1 37	68 62	30.50	407.00	49 19
B	18 22 4.05	0.05	19 34	0.03	25.42	8.90	48.20	58.26	22 77
C L	9.48	0.03	6.99	0.00	73.87	9.01	94.60	58.96	4.05
F	E 7.69	0.02	6.41	0.00	64.09	8.51	110.20	55.78	3.35
Г	13.28	0.02	31.49	0.00	12 32	14.13	104.10	91.64	30.07
F	F 12.75	0.02	0.00	n/a	10.80	21.24	166.70	136.07	32.61
	i 35.75	n/a	20.18	n/a	924.24	42.80	118.00	264.39	102.53
H	I 19.11	n/a	3.93	n/a	174.64	290.23	1514.90	1312.87	167.77
	I 5.23	n/a	0.00	n/a	2409.66	455.34	8715.00	1778.01	646.57
total gas		10 4	0.00	1. 4	2.07.00	100101	0/10100	87.00	4.00#
total gas								87.00	4.00
Plateau	(steps B-E)							57.00	3.00
S-31, ho	ornblende, J=	0.003688							
Α	43.62	n/a	0.00	0.01	15.88	41.71	95.60	258.15	77.85
Е	3 23.43	0.00	132.25	0.25	338.06	-43.10	-166.90	-312.33	276.96
C	C 7.92	0.02	14.50	0.01	55.82	6.15	77.00	40.49	4.74
Ľ	7.03	0.02	10.21	0.00	1.32	6.93	97.90	45.53	1.79
E	E 7.30	0.03	11.74	0.00	97.56	7.78	105.80	51.07	2.65
F	F 8.46	n/a	0.00	0.07	360.60	-11.59	-137.00	-78.83	74.80
C	G 8.75	n/a	0.00	n/a	157.75	60.50	691.70	363.34	125.61
Н	I 8.01	n/a	5.38	0.00	677.44	9.63	119.70	62.93	32.43
1	I 7.30	n/a	2.93	0.06	284.38	-9.07	-124.10	-61.39	71.14
total gas	age							47.00	$2.00^{\#}$
Plateau	(steps B-F)							47.00	3.00#
	(F)								
S-16 ho	rnhlanda I-	0.003688							
Δ	352 38	0.005000	7.68	1 34	0.12	-44 36	-12 50	-322 31	99.21
P R	x 79.23	0.20	9.74	0.27	0.12	1 56	2.00	10.35	10.18
C	32.16	0.00	10.94	0.27	0.23	4.12	12.00	27.20	3 75
Г	884	0.02	2 53	0.10	0.13	4.12	49.80	29.11	1 19
F	7 10	0.02	4 04	0.02	4 39	4.93	69.10	32.48	1.15
F	F 7.86	0.02	5.91	0.01	5 29	4.93	61.80	32.40	2.02
	6 24	0.01	26.98	0.01	4 57	4 03	63 30	26.59	1.80
H	I 5.63	0.01	57.86	0.02	3.45	3.11	53.10	20.61	2.01
	I 6.67	0.02	197.36	0.07	2.79	2.72	35.10	18.02	4.12
]	I 7.69	0.04	608.04	0.17	57.05	7.79	58.00	51.09	29.07
K	7.06	0.13	771.35	0.23	967.27	-4.34	-28.10	-29.11	190.74
total gas		0110	11100	0.20	, on <u>2</u> ,		20110	24.60	1.20#
total gas	age							24.00	1.20
Plateau	(steps C-H)							29.40	1.40 [°]
S-11, ho	ornblende, J=	0.003688							
A	A 59.29	0.03	22.36	0.18	40.80	7.05	11.70	46.31	47.90
E	s 10.58	0.01	34.59	0.06	11.77	-3.11	-28.70	-20.82	26.72
C	3.63	0.02	7.69	0.00	35.18	3.76	103.10	24.87	2.96
1 T	2.98	0.02	7.01	0.00	1.34	3.25	108.50	21.49	0.73
Ľ	3.05	0.02	7.42	0.00	1.22	3.16	102.90	20.88	0.85
ł	5.04	0.03	14.26	0.01	20.07	1.8/	36.70	12.39	1.22
C.	4. 72	n/a	/.5/	n/a	218.03	19.49	410.60	125.24	40.22
H	1 5.36	n/a	79.39	n/a	n/a	149.65	2635.10	792.86	135.35
	1 12.93	n/a	0.00	n/a	2033.25	1205.22	9324.90	3057.32	348.02
total gas	age							24.70	$0.80^{#}$
Plateau	(steps A-F)							21.30	0.80 [#]
H-22, bi	iotite, J=0.00	3688							
А	31.23	-6.97	0.00	n/a	49.30	131.28	420.30	712.35	60.33
В	29.38	1.67	2.00	28.70	2.84	20.91	71.10	133.99	13.91
С	8.34	1.91	11.80	n/a	1.66	9.24	110.80	60.43	6.84
D	4.70	1.42	9.33	0.43	3.26	4.58	97.50	30.24	2.03
Е	4.16	1.27	1.48	n/a	2.62	4.38	105.10	28.88	2.16

ID	40 Ar/ 39 Ar	³⁸ Ar/ ³⁹ Ar	³⁷ Ar/ ³⁹ Ar	³⁶ Ar/ ³⁹ Ar	⁴⁰ Ar (moles)	⁴⁰ Ar/ ³⁹ Ar	% Rad	Age	Error (1σ)
		$(x \ 10^{-2})$	$(x \ 10^{-2})$	$(x \ 10^{-3})$	$(x \ 10^{-15})$			(Ma)	(Ma)
F	4.18	1.53	8.04	n/a	3.36	4.62	110.60	30.50	1.75
G	3.25	1.53	3.63	0.37	3.67	3.15	96.70	20.82	1.20
Н	3.19	1.49	2.09	n/a	5.86	3.25	101.80	21.50	0.71
Ι	3.01	1.48	1.51	n/a	8.61	3.18	105.60	21.01	0.51
J	3.02	1.49	1.38	0.71	0.13	2.81	93.10	18.62	0.33
Κ	2.99	1.46	1.05	0.37	0.22	2.88	96.30	19.08	0.21
L	2.98	1.47	1.23	0.37	0.33	2.87	96.30	19.02	0.14
М	2.99	1.50	1.80	0.13	0.42	2.95	98.70	19.54	0.13
N	3.02	1.45	2.02	0.16	0.58	2.98	98.50	19.70	0.12
0	3.05	1.50	2.25	0.17	0.79	3.00	98.40	19.86	0.10
Р	3.05	1.46	2.92	0.45	0.98	3.01	99.60	19.92	0.08
Q	3.07	1.47	3.55	0.34	0.57	2.97	96.80	19.66	0.10
R	3.03	1.51	3.41	0.38	0.33	2.92	96.40	19.35	0.14
8	3.02	1.51	2.07	0.26	0.98	2.95	97.50	19.51	0.53
total gas	age							20.02	0.05*
Plateau (steps M-Q)							19.77	$0.05^{#}$
T-2 hvd	orthermal bio	otite. J=0.00	3688						
A	56.61	7.07	15.90	20.20	11.10	-3.11	-5.50	-20.79	14.63
В	6.61	1.66	2.77	4.96	2.89	5.14	77.80	33.90	3.67
С	3.26	1.33	0.89	1.95	4.49	2.69	82.40	17.80	1.33
D	2.98	1.52	1.34	0.57	4.79	2.81	94.30	18.63	1.01
Ε	2.84	1.48	1.55	0.34	5.78	2.74	96.60	18.14	0.83
F	2.77	1.53	2.30	0.68	6.52	2.57	92.90	17.03	0.67
G	2.75	1.45	1.54	0.61	8.25	2.57	93.50	17.03	0.51
Н	2.79	1.46	1.62	0.93	9.43	2.52	90.20	16.88	0.52
Ι	2.96	1.54	7.48	0.39	4.82	2.85	96.10	18.83	0.94
total gas	age							17.50	$0.30^{\#}$
Plateau (steps C-I)							17.50	0.30 [#]
T-4 , mag	gmatic biotite	e, J=0.00368	38						
А	10.11	2.07	12.00	19.50	2.17	4.36	43.10	28.77	6.42
В	3.32	1.60	3.05	n/a	4.46	3.58	107.80	23.64	1.11
С	2.71	1.40	1.42	n/a	6.32	2.93	108.30	19.40	0.68
D	2.66	1.46	0.83	0.30	9.38	2.57	96.70	17.03	0.44
E	2.63	1.43	1.09	0.62	0.11	2.45	93.00	16.23	0.34
F	2.64	1.40	1.36	0.33	0.15	2.54	96.30	16.83	0.29
G	2.63	1.44	1.87	0.71	0.11	2.42	92.10	16.02	0.38
н	2.66	1.45	2.46	0.78	6.73	2.43	91.40	16.09	0.59
I T	2.67	1.36	0.35	0.18	5.20	2.62	98.00	17.35	0.77
J V	2.70	1.55	0.28	1.27	1.89	2.33	80.10 05.10	15.41	1.89
A total gas	80.2	1.54	1.43	0.45	2.05	2.33	93.10	10.8/	1.73 0.18 [#]
DL 4	age							17.24	0.10
Plateau (steps D-K)							16.53	0.18"

 $^{\#}$ = 2 σ error; J = error in neutron flux; n/a = no detection

APPENDIX C1

Electron microprobe analyses

Electron microprobe analyses of feldspar grains

										╞			Gab	obroic Dy	yke										:	; ;	
					Hbl Ga.	bbro						Hbl G	iabbro						Gat	bro					Gabbro	ic Diorit	te
mple No.	16	16	16	16	16	16	16	16	16	16	55 5	55 5.	5 5:	5 55	5 57	57	57	57	57	57	57	57	57	57	87	87	87
alysis No.	lr.	lc	lrl	1c1	2r	2c	3r	3c	4r	4c	lr :	2c 2	r 3,	c 3r	r lr	1c	2r	2c	3c	4r	4c	5r	6r	6c	1c	lr	2c
	Oxide W_{ℓ}	ight Perc	sent																								
SiO_2	50.48	47.52	57.12	49.43	53.21	49.95	55.84	46.89	47.53	45.77	46.27 4	8.55 51	1.71 47	7.22 46.	.85 51.0	9 52.5	8 51.7	9 54.81	64.47	53.88	52.78	53.04	52.54	50.35	51.49	52.85	50.41
TiO_2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	0.20 <(0.20 <6	0.20 <0.	0.20 <0.2	20 <0.2	0 <0.2	0 <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Al_2O_3	29.84	32.85	26.02	31.40	28.52	30.52	27.12	33.40	32.79	34.35	32.92 3	1.30 25	9.32 32	2.85 33.	:32 30.5	39 29.0	4 29.1	0 27.60	21.44	28.34	29.27	28.51	28.50	30.02	29.62	29.09	30.64
$Fe_2O_3(T)$	0.72	0.49	0.74	0.76	0.97	0.97	0.46	0.71	0.53	0.48	0.52	0.57 (0.98 0	0.63 0.	.63 0.2	76 0.7	6 0.8	8 0.8(0.37	0.65	0.69	0.75	0.81	0.42	0.72	0.82	0.72
MnO	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 €	<0.20 <	0.20 <(0.20 <0).20 <0.	1.20 <0.2	20 <0.2	0 <0.2	0 <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
MgO	0.21	0.39	<0.20	0.40	0.66	0.43	0.41	0.42	0.64	0.56	0.61	0.43 (0.49 0	0.71 0.	0.4	14 0.5	2 0.2	9 0.47	<0.20	0.27	0.68	<0.20	0.63	0.28	0.60	0.63	0.66
CaO	14.12	16.90	8.78	15.46	12.40	14.65	10.36	17.66	17.01	18.20	17.42 1	5.90 1:	3.71 17	7.03 17.	.08 13.7	78 12.2	7 12.5	6 10.57	3.20	11.09	12.46	11.93	12.31	14.19	12.77	12.98	15.01
Na_2O	3.21	1.80	5.97	2.38	4.28	2.91	5.47	1.41	1.56	1.16	1.05	1.99	3.21 1	1.43 1.	.57 3.t	53 4.0	3 4.2	5 5.3	10.06	5.17	4.30	4.52	4.37	3.28	3.13	3.83	2.73
K_2O	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	<0.20 <	<0.20 <	0.20 <(0.20 <c< td=""><td>).20 <0.</td><td>1.20 0.2</td><td>21 0.2</td><td>3 0.2</td><td>3 0.45</td><td>0.31</td><td>0.25</td><td>0.23</td><td>0.26</td><td>0.26</td><td><0.20</td><td>0.60</td><td><0.20</td><td><0.20</td></c<>).20 <0.	1.20 0.2	21 0.2	3 0.2	3 0.45	0.31	0.25	0.23	0.26	0.26	<0.20	0.60	<0.20	<0.20
Ū	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-0.20 <	0.20 <(0.20 <0).20 <0.	·.20 <0.2	20 <0.2	0 <0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total	98.77	100.02	99.46	99.88	100.36	99.61	100.17 1	100.58 1	00.50 1	00.82	38.93 9	9.16 99	9.72 100	0.11 100.	.42 100.5	34 99.4	5 99.2	6 100.25	100.07	99.81	100.48	99.35	77.66	98.81	99.20 1	00.51 1	00.50
	Number	of atoms	s per fon	nula unit	, (32 ox)	gens)																					
Si	9.34	8.74	10.34	9.07	9.66	9.19	10.07	8.60	8.72	8.40	8.62	5 66.8	9.46 8	3.69 8.	.61 9.5	31 9.6	1 9.5	2 9.92	11.41	9.80	9.56	9.71	9.61	9.31	9.46	9.58	9.19
ï	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	<0.20 <	0.20 <(0.20 <0).20 <0.	.20					'	'	'	,	'	,	,	'
AI	6.50	7.12	5.55	6.79	6.10	6.62	5.77	7.22	7.09	7.43	7.22	6.83 (6.32 7	7.12 7.	.21 6.5	53 6.2	5 6.3	0 5.89	4.47	6.07	6.25	6.15	6.14	6.54	6.42	6.21	6.58
Fe^{2+}	0.11	0.07	0.11	0.12	0.15	0.15	0.07	0.11	0.08	0.07	0.08	0.09	0.15 0	0.10 0.	0.1	11 0.1	2 0.1	3 0.12	0.05	0.10	0.10	0.11	0.12	0.06	0.11	0.12	0.11
Mn	'	'	'	'	'	'	'	,	,	,	,	,	,	,	,				'	'	'	'	'	'	'	,	'
Mg	0.06	0.11	'	0.11	0.18	0.12	0.11	0.12	0.18	0.15	0.17	0.12 (0.13 0	0.20 0.	0.17 0.1	12 0.1	4 0.0	8 0.13	'	0.07	0.18	'	0.17	0.08	0.16	0.17	0.18
Ca	2.80	3.33	1.70	3.04	2.41	2.89	2.00	3.47	3.34	3.58	3.48	3.15	2.69 3	3.35 3.	:.36 2.(59 2.4	0 2.4	7 2.05	0.60	2.16	2.42	2.34	2.41	2.81	2.51	2.52	2.93
Na	1.15	0.64	2.09	0.84	1.51	1.03	1.91	0.50	0.55	0.41	0.38	0.71	1.14 6	0.51 0.	1.26 1.2	28 1.4	2 1.5	1 1.87	3.45	1.82	1.51	1.60	1.55	1.18	1.12	1.34	0.96
К		1	'	•	,	•	,	,		,					- 0.0	0.0	5 0.0	5 0.11	0.07	0.06	0.05	0.06	0.06	'	0.14	1	1
ū	'	'	'	1	'	1	•	•							,					1	'	1	1	'	•	•	'
Total	20.00	20.04	19.99	19.98	20.06	20.04	20.04	20.04	20.05	20.09	1 10.61	9.98 1	9.96 20	0.01 20.	0.07 20.0	11 20.0	0 20.1	1 20.13	20.12	20.10	20.10	20.04	20.12	20.04	19.99	20.01	20.00
An	0.71	0.84	0.45	0.78	0.62	0.74	0.51	0.87	0.86	0.90	06.0	0.82	0.70 6	.87 0.	.86 0.6	57 0.6	2 0.6	1 0.51	0.15	0.53	0.61	0.58	0.60	0.71	0.67	0.65	0.75
Ab	0.29	0.16	0.55	0.22	0.38	0.26	0.49	0.13	0.14	0.10	0.10	0.18 (0.30 0	0.13 0.	.14 0.5	32 0.3	7 0.3	7 0.46	0.84	0.45	0.38	0.40	0.39	0.29	0.30	0.35	0.25
Ō	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00,000	0.0 10	1 0.0	1 0.03	0.02	0.01	0.01	0.02	0.01	0.00	0.04	0.00	0.00
	-									-					-									-			
	$\mathbf{r} = $ analy:	sis at grait	n rim; c =	= analysis	at grain (core; <0.2	0 = belov	v detectio	n limit; -	= below	detection	limit															

Appendix: C1

9 59 59 59
ر بر 11 59
11 11 11 1r 1c 2r
32 32 1. 4r 4r 1
32 32 32 !c 2c 3c
46 46 46 32 1c 2r 2c 1c
31 31 31 44 2r1 2r2 3r 14
31 2r
31 31 1c 2c

		H22	4	 59.24	≤0.20	25.76	<0.20	<0.20	0.44	8.34	6.04	0.44	<0.20	00.53	 10.53	,	5.40	'	,	0.12	1.59	2.08	0.10	'	19.87	0.42	0.55 0.03	
		H22 I	4r	58.59	<0.20	25.97	0.42	<0.20	0.46	8.92	6.09	0.31	<0.20	00.87 10	10.42	,	5.45	0.06	,	0.12	1.70	2.10	0.07	•	19.95	0.44	0.54 0.02	
	orite	H22 I	Эr	57.60	<0.20	26.29	0.24	<0.20	0.61	9.33	5.78	0.28	<0.20	00.42 1	10.31	,	5.54	0.04	,	0.16	1.79	2.00	0.07	,	19.96	0.46	$0.52 \\ 0.02$	
	Hol-Bt Di	H22	30	56.56	<0.20	27.36	<0.20	<0.20	0.41	10.39	5.27	<0.20	<0.20	00.40 1	10.13	,	5.78	1	,	0.11	1.99	1.83	•	•	19.92	0.52	$0.48 \\ 0.00$	
	ł	H22	.7c	58.00	<0.20	25.99	<0.20	<0.20	0.61	8.81	5.96	0.43	<0.20	00.14 1	10.39	,	5.49	1	,	0.16	1.69	2.07	0.10	,	19.96	0.44	0.54 0.03	
		H22	lc	59.16	<0.20	26.06	<0.20	<0.20	0.63	8.76	6.07	0.32	<0.20	101.30	10.46	'	5.43	1	'	0.17	1.66	2.08	0.07	'	19.92	0.44	$0.55 \\ 0.02$	
		Chail	/c.7	56.53	<0.20	26.58	<0.20	<0.20	0.22	9.14	5.97	0.34	<0.20	99.02	10.24	'	5.67	'	'	0.06	1.77	2.09	0.08	'	19.95	0.45	0.53 0.02	
		Chail 6	/c1	54.09	<0.20	27.80	0.43	<0.20	0.51	10.68	5.23	<0.20	<0.20	99.11	9.87	'	5.98	0.07	'	0.14	2.09	1.85	'	'	20.08	0.53	0.47 0.00	
itres		Chail	/c	56.11	<0.20	26.81	0.32	<0.20	0.35	9.42	5.80	0.28	<0.20	99.24	10.17	'	5.73	0.05	1	0.09	1.83	2.04	0.06	'	20.00	0.47	$0.52 \\ 0.02$	
sive Cer		Chail 7	/I	58.23	<0.20	25.48	0.22	<0.20	0.42	8.11	6.49	0.27	<0.20	99.55	10.48	'	5.40	0.03	1	0.11	1.56	2.26	0.06	'	19.97	0.40	0.58 0.02	
ed Intru		Chail	0 C	57.58	<0.20	26.01	0.35	<0.20	0.48	8.93	6.09	0.38	<0.20	99.87	10.34	'	5.51	0.05	1	0.13	1.72	2.12	0.09	'	19.96	0.44	0.54 0.02	
ineralise		Chail	br	55.86	<0.20	27.13	0.26	<0.20	0.25	9.82	5.33	0.21	<0.20	98.97	10.15	'	5.81	0.04	'	0.07	1.91	1.87	0.05	'	19.91	0.50	0.49 0.01	
cene M		Chail E-	20	57.18	<0.20	26.22	0.28	<0.20	0.46	8.79	6.33	0.31	<0.20	99.76	10.30	'	5.56	0.04	1	0.12	1.70	2.21	0.07	'	20.03	0.43	0.56 0.02	
vlid Mic	e	Chail E-	JI	57.42	<0.20	26.28	0.19	<0.20	0.59	8.62	6.26	0.25	<0.20	99.75	10.33	'	5.57	0.03	1	0.16	1.66	2.18	0.06	'	20.01	0.43	0.56 0.01	
Early-N	Bt Diorit	Chail 1-	4c	57.12	<0.20	26.38	0.24	<0.20	0.22	9.00	5.99	0.21	<0.20	99.29	10.32	'	5.61	0.04	1	0.06	1.74	2.10	0.05	'	19.93	0.45	$0.54 \\ 0.01$	
	Hbl-	Chail 4-	4r	58.60	<0.20	25.71	<0.20	<0.20	0.43	8.35	6.18	0.32	<0.20	99.83	10.50	'	5.43	'	'	0.11	1.60	2.14	0.07	1	19.89	0.42	0.56 0.02	
		Chail	3r	57.52	<0.20	26.11	0.25	<0.20	0.38	8.47	6.35	0.29	<0.20	99.52	10.36	'	5.54	0.04	'	0.10	1.63	2.22	0.07	1	19.98	0.42	$0.57 \\ 0.02$	
		Chail	3C	58.58	<0.20	25.30	0.35	<0.20	0.30	7 <i>.</i> 77	6.97	0.36	<0.20	99.91	10.52	'	5.35	0.05	1	0.08	1.49	2.43	0.08	'	20.05	0.37	0.61 0.02	
		Chail 2.	ЭГ	58.17	<0.20	25.60	0.36	<0.20	0.20	8.14	6.36	0.29	<0.20	99.24	10.49	'	5.44	0.05	1	0.05	1.57	2.22	0.07	'	19.92	0.41	0.58 0.02	
		Chail	70	56.18	<0.20	26.76	0.30	<0.20	0.39	9.57	5.65	0.32	<0.20	99.22	10.19	'	5.72	0.05	1	0.10	1.86	1.99	0.07	'	19.98	0.47	0.51 0.02	
		Chail 7-	.7L	56.82	<0.20	26.40	0.21	<0.20	0.41	8.89	6.00	0.29	<0.20	99.12	10.29	'	5.63	0.03	'	0.11	1.72	2.11	0.07	'	19.98	0.44	$0.54 \\ 0.02$	
		Chail	lc	57.16	<0.20	26.07	0.33	<0.20	0.40	8.79	6.41	0.23	<0.20	99.52	10.32	'	5.55	0.05	'	0.11	1.70	2.24	0.05	'	20.04	0.43	0.56 0.01	
		Chail	Ir	55.80	<0.20	27.05	0.25	<0.20	0.54	9.54	5.73	0.23	<0.20	99.18	10.12	'	5.78	0.04	'	0.14	1.85	2.01	0.05	'	20.01	0.47	0.51 0.01	
		Sample No.	Analysis No.	SiO_2	TiO_2	Al_2O_3	$\mathrm{Fe}_2\mathrm{O}_3(\mathrm{T})$	MnO	MgO	CaO	Na_2O	$\rm K_2O$	ū	Total	Si	ï	AI	Fe^{2+}	Mn	Mg	Ca	Na	К	ū	Total	An	Ab Or	

										Early-N	Aid Mio	cene Mi	neralise	d Intrus	ive Cen	tres									
		Hbl-Bt l	Diorite				Hbl-	-Bt Diorit	e				θH	I-Bt Qtz]	Diorite					I	Hol-Bt D	iorite			
Sample No.	T1 Gal	T1 Gal	T1 Gal	T1 Gal	T2 Gal	T2 Gal	T2 Gal	T2 Gal	T2 Gal 7	C2 Gal T	2 Gal	I3 Gal 7	3 Gal T	3 Gal T	3 Gal T	3 Gal T	3 Gal 7	4 Gal T	'4 Gal T	4 Gal T	4 Gal T	'4 Gal T	4 Gal T	4 Gal T	4 Gal
Analysis No.	lr	1c	2c	3с	lr	lc	2r	2c	2c	3c	3r	lc	lr	2r	2c	3c	3r	lc	lr	2c	2r	3r	3с	4r	4c
SiO_2	58.84	60.04	59.09	58.78	58.58	59.51	54.41	59.37	55.64	59.55	58.28	58.55	58.72	57.58	58.63	57.98	57.05	57.37	57.46	57.32	54.45	55.71	56.29	58.05	55.82
TiO_2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Al_2O_3	24.88	24.31	24.59	24.14	25.24	24.30	27.03	24.20	26.06	24.40	24.99	25.18	24.62	25.34	24.68	24.71	25.37	25.44	25.33	25.70	27.81	25.49	25.16	24.97	26.35
$\operatorname{Fe_2O_3(T)}$	<0.20	<0.20	<0.20	<0.20	<0.20	0.26	<0.20	0.32	0.28	<0.20	0.23	0.20	0.23	<0.20	0.29	<0.20	<0.20	<0.20	0.43	0.20	0.32	0.30	0.21	<0.20	0.30
MnO	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
MgO	<0.20	<0.20	<0.20	<0.20	0.26	<0.20	0.24	0.27	<0.20	0.25	<0.20	0.39	<0.20	0.23	0.29	<0.20	<0.20	0.32	0.33	0.44	0.39	0.20	<0.20	0.29	0.45
CaO	8.86	8.49	8.47	8.75	9.13	8.13	12.38	8.37	10.90	8.09	8.92	8.76	8.67	10.07	8.96	9.48	9.71	8.47	8.19	8.43	11.17	9.13	8.95	7.95	9.54
Na_2O	5.46	5.73	5.55	5.73	5.75	5.94	4.46	5.93	4.85	5.84	5.32	5.28	5.77	5.23	5.59	5.58	5.03	6.29	6.52	6.35	4.74	5.79	5.88	6.44	5.69
K_2O	0.30	0.38	0.32	0.26	0.20	0.38	0.27	0.46	0.20	0.45	0.29	0.40	0.41	0.36	0.45	0.31	0.40	0.41	0.50	0.44	0.26	0.39	0.38	0.35	0.36
ū	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total	98.80	99.31	98.30	98.12	99.36	98.72	99.15	99.04	98.15	98.89	98.21	98.84	98.81	99.12	98.97	98.63	97.92	98.53	98.91	99.03	99.49	97.16	97.13	98.26	98.63
Si	10.63	10.78	10.71	10.70	10.55	10.75	9.94	10.72	10.22	10.74	10.59	10.57	10.63	10.43	10.60	10.54	10.44	10.44	10.44	10.39	9.90	10.32	10.41	10.57	10.20
ï	'	'	'		'	'	'	'	'	'	'	'	'	,	,	'	'	'	'	'	'	'	'	'	'
AI	5.30	5.15	5.23	5.18	5.35	5.17	5.82	5.15	5.64	5.18	5.35	5.36	5.25	5.41	5.26	5.30	5.47	5.46	5.42	5.49	5.96	5.56	5.48	5.36	5.67
Fe^{2+}	'	'	'	'	'	0.04	1	0.05	0.04	1	0.03	0.03	0.03	1	0.04	'	'	1	0.07	0.03	0.05	0.05	0.03	'	0.05
Mn	'	'	'	'	'	'	'	'	'	,	'	'	,	,	,	,	'	'	,	,	,	'	,	,	'
Mg	'	'	'	'	0.07	'	0.07	0.07	'	0.07	'	0.10	,	0.06	0.08	,	'	0.09	0.09	0.12	0.10	0.06	,	0.08	0.12
Ca	1.71	1.64	1.69	1.71	1.76	1.57	2.43	1.62	2.14	1.56	1.74	1.69	1.68	1.95	1.74	1.85	1.90	1.65	1.59	1.64	2.18	1.81	1.77	1.55	1.87
Na	1.91	2.04	1.92	2.02	2.00	2.08	1.58	2.07	1.72	2.04	1.87	1.85	2.02	1.83	1.96	1.97	1.79	2.22	2.29	2.23	1.67	2.08	2.10	2.27	2.02
K	0.07	0.09	0.09	0.06	0.05	0.09	0.06	0.11	0.05	0.10	0.07	0.09	0.09	0.08	0.10	0.07	0.09	0.10	0.12	0.10	0.06	0.09	0.09	0.08	0.08
ū	'	'	1	'	'	'	'	'	'	'	'	'	•	•	•	,	'	'	•	'	,	'	'	'	'
Total	19.70	19.80	19.72	19.74	19.82	19.75	19.96	19.80	19.85	19.75	19.69	19.72	19.79	19.82	19.80	19.84	19.77	19.99	20.05	20.02	19.99	19.99	19.96	19.93	20.02
An	0.46	0.43	0.46	0.45	0.46	0.42	0.60	0.43	0.55	0.42	0.47	0.47	0.44	0.50	0.46	0.48	0.50	0.42	0.40	0.41	0.56	0.45	0.45	0.40	0.47
Ab	0.52	0.54	0.52	0.53	0.53	0.56	0.39	0.55	0.44	0.55	0.51	0.51	0.53	0.47	0.52	0.51	0.47	0.56	0.57	0.56	0.43	0.52	0.53	0.58	0.51
ģ	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.03	0.01	0.03	0.02	0.03	0.02	0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.02

L					Mioc	cone Vol	canic U	nits				
		Hb	ol Basaltic	c Andesit	e				Hbl-Bt A	ndesite		
Sample No.	64	64	64	64	64	64	63	63	63	63	63 2	63
Analysis No.	lr	lc	2c	2r	3с	3r	١r	lc	2c	2r	3r	3с
0:0	01 22	00 22	50.46	20.03	02.02	00 23	10 2	20 20	20.16	20.02	11.03	00.03
SIU 2	81.00	06.00	04.60	17.00	61.60	66.1 C	14.00	00.00	01.00	17.90	11.90	00.80
TiO_2	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Al_2O_3	27.50	27.87	25.38	25.26	25.28	26.24	24.94	26.10	25.29	25.79	25.69	26.36
$\mathrm{Fe}_2\mathrm{O}_3(\mathrm{T})$	0.49	0.79	0.25	0.26	0.42	0.38	0.43	0.25	0.56	<0.20	0.47	0.13
MnO	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
MgO	0.45	0.48	0.53	0.44	0.52	0.54	<0.20	0.40	0.54	0.42	0.39	0.50
CaO	11.21	11.19	8.30	7.73	8.04	9.09	8.21	8.91	8.25	8.90	8.28	9.54
Na_2O	4.52	4.86	5.45	6.09	6.43	5.61	6.02	5.46	5.73	5.67	5.98	5.33
K_2O	0.26	<0.20	0.75	0.81	0.80	0.47	0.64	0.53	0.81	0.49	0.54	0.35
ū	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total	100.31	101.33	100.10	101.04	101.43	100.34	99.12	100.23	99.45	99.73	100.71	100.38
Si	10.03	9.98	10.61	10.66	10.58	10.37	10.57	10.45	10.50	10.46	10.52	10.35
Ë	'	'	'	'	'	'	'	'	'	'	'	'
AI	5.83	5.86	5.33	5.26	5.27	5.53	5.32	5.49	5.38	5.45	5.39	5.55
Fe^{2+}	0.07	0.12	0.04	0.04	0.06	0.06	0.07	0.04	0.08	'	0.07	0.02
Mn	'	'	'	'	'	'	'	'	'	'	'	'
Mg	0.12	0.13	0.14	0.12	0.13	0.14	'	0.10	0.14	0.11	0.10	0.13
Ca	2.16	2.14	1.59	1.46	1.52	1.74	1.59	1.70	1.59	1.71	1.58	1.82
Na	1.57	1.68	1.88	2.08	2.20	1.94	2.11	1.89	2.00	1.97	2.06	1.84
K	0.06	'	0.17	0.18	0.18	0.11	0.15	0.12	0.19	0.11	0.12	0.08
CI	'	1	1	1	'	'	'	1	1	1	1	1
Total	19.86	19.95	19.75	19.84	19.98	19.89	19.91	19.80	19.91	19.85	19.88	19.83
An	0.57	0.56	0.44	0.39	0.39	0.46	0.41	0.46	0.42	0.45	0.42	0.49
Ab	0.42	0.44	0.52	0.56	0.56	0.51	0.55	0.51	0.53	0.52	0.55	0.49
ų	0.02	0.00	0.05	0.05	0.05	0.03	0.04	0.03	0.05	0.03	0.03	0.02

Electron microprobe analyses of hornblende grains

	(dof)	huoio Du	1.0																Deleger	nno Lon	on In	60				
	Gau		NC																I alacu	celle 1g1	IEO GUO	112				
	St	h Galeno							Co Mc	ontana - H	bl Diorite									East Mi	nas Cong	a - Hbl Mi	icrodiori	le		
Sample No.	55	55	55	31	31	31	31	31	31	31	31	31 3	31 3	11 3	1 3.	1 31	46	46	46	46	46	46	46	46	46	46
Analysis No.	lr	lr	1c	lr	lc	1c1	2r	2c	2r1	2c1	2c2 2	c3 5	3c 4	łr 4	c 4r	-1 4r2	1c	lr	2c	3c	4r	4c	Stk 1c	Stk 2c	Stk 2r	Stk 3c
	Oxide We	ight Perc	tua.																							
SiO_2	42.46	42.16	41.94	42.23	42.46	42.10	42.12	40.49	44.03	40.37	40.56 4	12.64 4.	2.75 4:	3.18 45	3.02 43	3.82 43.	83 49.	85 50.4	7 41.8	9 46.0	1 48.13	2 47.14	. 45.06	43.22	49.42	48.03
TiO_2	2.15	2.65	2.68	2.45	2.56	2.65	2.68	2.64	2.22	2.66	2.57	2.49	2.36	2.53	3.14 1	.99 2.4	44 1.	46 1.2	1 2.2	3 2.0	7 1.60	0 1.99	1.60	1.97	1.60	2.08
Al_2O_3	13.07	13.44	13.45	12.61	11.91	11.98	12.41	14.39	9.73	14.45	14.41 1	1.59 1	1.67 1(0.67 10	.45 9	.05 9.	66 5.2	99 5.1	5 12.7	2 8.7	0 5.70	6.68	9.55	10.41	6.01	6.86
$\mathrm{Fe}_2\mathrm{O}_3(\mathrm{T})$	11.92	12.16	11.68	15.02	14.78	15.87	14.43	14.62	17.26	14.90	15.14	4.75 10	6.41 18	8.64 15	5.51 20	.21 19.	69 12.	15 12.0	9 13.8	7 13.8	7 12.65	5 11.89	15.61	15.64	11.95	12.42
MnO	0.31	0.20	<0.20	0.39	0.34	0.36	0.29	<0.20	0.29	<0.20	0.33	0.22	0.49 (0.40 ().33 0	.69 0.	75 0.4	47 0.6	0 0.3	3 0.4	7 0.40	5 0.57	0.73	0.39	0.59	0.56
MgO	13.67	13.10	13.31	12.29	12.81	12.56	13.14	12.03	11.90	12.22	11.69 1	3.00 1	1.77 10	0.92 12	2.58 10	.42 10.	92 14	36 15.0	0 11.6	9 12.4	9 14.4	3 14.79	11.38	11.26	14.68	14.39
CaO	11.01	10.92	10.83	10.85	10.98	10.73	11.05	11.02	10.20	11.10	11.17	0.62 14	0.59 1(0.28 10	0.56 10	0.22 9.5	07 II.	06 11.0	3 11.1	0 11.9	3 11.05	5 10.86	10.83	10.99	10.81	10.60
Na_2O	2.20	2.45	2.94	2.22	2.39	2.65	2.55	2.80	1.98	2.42	2.23	2.39	2.12	2.33 2	2.29 2	2.01 2.	52 1.	37 1.3	2.2	1 1.6	1 1.2	5 1.38	1.61	2.06	1.43	1.71
K_2O	0.38	0.49	0.47	0.52	0.56	0.51	0.51	0.51	0.52	0.42	0.56	0.53	0.51 (0.54 (0.47 0	.64 0	51 0.	57 0.4	4 0.6	6 0.7	6 0.5	0.57	0.59	0.70	0.59	0.51
ü	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.25	<0.20	<0.20 <	0.20 <t< th=""><th>0.20 (</th><th>0.20 <(</th><th>0.20 0</th><th>0.32 0</th><th>22 0</th><th>22 <0.2</th><th>0 <0.2</th><th>0 <0.2</th><th>0 <0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th><th><0.20</th></t<>	0.20 (0.20 <(0.20 0	0.32 0	22 0	22 <0.2	0 <0.2	0 <0.2	0 <0.20	<0.20	<0.20	<0.20	<0.20	<0.20
0=CI									0.06)	0.05	0	0.07 0.0	05 0.4	05								
Total	97.24	97.66	97.37	98.71	98.82	99.51	99.24	98.78	98.30	98.68	98.72 5	18.25 9.	8.82 9!	9.61 91	3.51 99	.29 100.	46 97	43 97.4	8 96.7	3 98.0	4 96.0	4 96.04	90.76 .	96.79	97.22	97.28
	Number .	of atoms	per formu	ila unit (23	oxygen:	s)																				
Si	6.26	6.20	6.18	6.13	6.05	5.88	6.24	6.26	6.21	6.18	5.99	6.57	5.97 (6.01 t	5.31 6	5.34 6.4	42 7	26 7.3	4 6.2	8 6.7	9 7.16	5 7.00	6.75	6.53	7.22	7.04
Ti	0.24	0.29	0.30	0.40	0.44	0.40	0.27	0.28	0.29	0.30	0.29	0.25	0.30 (0.29 (0.28 0	0.26 0	28 0.	16 0.1	3 0.2	5 0.2	3 0.18	3 0.22	0.18	0.22	0.17	0.23
AI	2.27	2.33	2.34	2.14	2.27	2.51	2.19	2.07	2.08	2.15	2.51	1.71	2.52	2.52	2.02 2	2.04 1.4	87 1.5	03 0.8	8 2.2	5 1.5	1 1.0	1.17	1.68	1.85	1.03	1.19
Fe^{2+}	1.47	1.50	1.44	1.80	1.72	1.73	1.85	1.82	1.96	1.77	1.81	2.15	1.84	1.87	1.83 2	2.03 2.	32 1.	48 1.4	7 1.7	4 1.7	1 1.57	7 1.48	1.95	1.98	1.46	1.52
Mn	0.04	0.02	•	0.03	0.02	0.03	0.05	'	0.05	,	0.02	0.04	0.02 (0.04 (0.03 0	0.0 0.0	05 0.4	0.0 0.0	7 0.0	4 0.0	6 0.00	5 0.07	60.0	0.05	0.07	0.07
Mg	3.00	2.87	2.92	2.66	2.66	2.61	2.70	2.81	2.76	2.87	2.65	2.64	2.69	2.58	2.87 2	2.60 2.4	42 3.	11 3.2	5 2.6	1 2.7	4 3.2(3.27	2.54	2.53	3.19	3.14
Ca	1.74	1.72	1.71	1.80	1.82	1.85	1.72	1.73	1.69	1.74	1.75	1.63	1.76	1.77	1.68 1	.68 1.	64 1.	72 1.7	2 1.7	8 1.8	8 1.76	5 1.73	1.74	1.78	1.69	1.66
Na	0.63	0.70	0.84	0.66	0.65	0.71	0.63	0.68	0.76	0.72	0.80	0.57	0.69 (0.64 ().69 ()).61 0.4	67 0	39 0.3	7 0.6	4 0.4	6 0.30	5 0.40	0.47	0.60	0.40	0.48
ĸ	0.07	0.09	0.09	0.19	0.18	0.22	0.10	0.10	0.10	0.10	0.10	0.10	0.08 (0.11 (0.10 6	0.10 0.	10 0.	11 0.0	N 0.1	3 0.1	4 0.1	0.11	0.11	0.13	0.11	0.10
ū	'	'	•	•	'	'	'	'	0.03				-	0.02	- 0	0.04 0.0	05 0.4	05							'	'
Total	15.73	15.76	15.83	15.84	15.82	15.94	15.80	15.82	15.91	15.88	15.94 1	5.72 1.	5.86 1:	5.84 12	5.80 15	5.77 15	80 15	37 15.3	6 15.7	3 15.5	6 15.4	15.48	15.55	15.72	15.39	15.46
# Mg	67.13	65.76	67.01	59.72	60.66	60.05	59.32	60.70	58.51	61.87	59.45 5	5.12 5	9.37 5.	7.92 61	.10 56	111 51.0	07 67.5	81 68.8	5 60.0	2 61.5	8 67.02	68.90	56.51	56.19	68.64	67.37
Al ^{vi}	1.74	1.80	1.82	1.87	1.95	2.12	1.76	1.74	1.79	1.82	2.01	1.43	2.03	1.99	1.69 1	.66 1	58 0.	74 0.6	6 1.7	2 1.2	1 0.8	1 1.00	1.25	1.47	0.79	0.96
	r = analys	iis at grain	ו rim; c = a.	nalysis at gı	rain core;	<0.20 =	below de	stection li	mit; - = b	elow dete	ction limi	t														

cont.	
nalyses	
ende a	
Hornbl	

	ite	~ ~	c	37	1.24	1.96	3.69).62	3.76	2.67	1.81	1.28	0.20		3.46	5.30	0.14	2.15	2.38	0.08	1.99	2.07).53	0.25	,	5.90	5.49	1.70
	Qtz Dioi	ж С (ດ ວ	51 4	.15	.56 1	9.68 18	.57 (8.71 8	2.60 13	.79	.20	0.20 <(3.86 98	5.32 ().13 (2.07	2.50	.07 (.98	2.05).53 ().23 (,	5.92 15	1.10 45	89.
	pa - Hbl		7	.17 41	.46	.31 11	.24 19	.41 (3 90.	.49 12	.48	.21	.20 <(.94 98	.27 6	.17 0	.21 2	.32	.05 (.06	.04	. 4	.23 (,	.82 15	.96 44	.73 1
	Car	38	Ĭ	82 41	15 1	07 12	42 18	45 0	23 9	57 12	.64	.85 1	20 <0		30 97	36 6	.13 0	.16 2	59 2	06	09	72 2	48 0	.16 0	'	78 15	60 46	64 1
	orite	11	5	85 41.	06 1	84 12.	50 20.	64 0.	16 9.	75 10.	17 1.	94 0.	20 <0.		93 98.	38 6.	12 0.	13 2	61 2.	08 0.	08 2	76 1.	35 0.	18 0.	,	70 15.	34 44	62 1
	- Hbl Dio	11 2°	30	59 41.	10	14 11.	72 20.	61 0.	94 9.	78 10.	22 1.	73 0.	20 <0.		93 97.	46 6.	13 0.	99 2	50 2.	08 0.	25 2.	75 1.	36 0.	14 0.	,	69 15.	31 44	54 1.
	Patricia	11	JC	91 42.	03 1.	84 11.	00 19.	70 0.	79 9.	75 10.	54 1.	66 0.	20 <0.		30 97.	50 6.	12 0.	93 1.	53 2.	.0 0.	21 2.	74 1.	45 0.	13 0.	,	73 15.	57 47.	50 1.
	Aurora	11	22	02 42.	00	69 10.	41 20.	39 0.	52 9.	77 10.	23 1.	59 0.	20 <0.		72 98.	58 6.	11 0.	93 1.	48 2.	05 0.	17 2.	76 1.	37 0.	12 0.	,	60 15.	63 46.	42 1.
e Units		11	IC	15 43.	31 1.	43 10.	69 19.	53 0.	56 9.	82 10.	75 1.	12 0.	20 <0.		44 96.	49 6.	15 0.	03 1.	60 2.	07 0.	92 2.	74 1.	51 0.	22 0.		74 15.	44 46	51 1.
Intrusiv		59	11	07 43.	18 1.	05 11.	88 20.	51 0.	37 8.	97 10.	50 1.	33 1.	20 <0.		00 99.	42 6.	13 0.	17 2.	53 2.	07 0.	90 1.	79 1.	44 0.	26 0.	,	76 15.	87 42.	58 1.
3arren]		59 7 ₉	/C	58 42.0	45 1.	21 12.0	76 19.	57 0.2	13 8.	47 10.5	78 1.:	85 1.	20 <0.		00 98.0	59 6.	16 0.	20 2.	12 2.	0.0 70	28 1.9	69 1.7	52 0.4	16 0.3	,	65 15.7	86 42.	41
liocene l	9	59	OL	50 43.	57 1.	38 11.	53 16.	31 0.	78 10.	53 10.	04 1.	51 0.	20 <0.		47 97.	52 6.	18 0.	01 2.	38 2.	0.0	41 2.	71 1.	59 0.	12 0.	,	66 15.	51 51.	48 1.
M	tz Diorit	59	00	19 43.	55 1.2	58 11.3	76 16.0	22 0.3	38 10.2	00 10.6	57 2.0	73 0.6	22 <0.2)5	33 97.4	57 6.1	22 0.	87 2.0	96 2.(0.0	45 2.4	75 1.0	74 0.5	14 0.)5	77 15.0	51 53.0	43 1.4
	Hbl-Bt Q	59	IC	5 44.	38 1.9	10.0	0 15.2	0.1	0.11.62	31 11.0	2.2	53 0.7	30 0.3	0.0	11 98.3	50 6.5	21 0.2	97 1.8	9.1.9)3 0.(50 2.4	72 1.7	.0	0.0	0.0	76 15.7	70 55.0	50 1.4
	Region -	59 59	30	60 43.6	7 1.8	8 11.2	5 16.0	52 0.2	6 11.2	8 10.8	13 2.2	4 0.6	0.0	0.0	12 98.1	3 6.5	3 0.2	1.9	1.9	0.0	6 2.5	4 1.7	12 0.6	4 0.1	- 0.0	3 15.7	11 55.7	1.5
	iquillay I	59 4-	4	3 44.6	1.1	1 10.1	2 18.3	3 0.5	5.6 6	5 10.7	1.4	2 0.7	0 <0.2		8 97.4	8 6.7	4 0.1	9 1.8	8 2.3	7 0.C	3 2.1	7 1.7	4.0.4	4 0.1		5 15.5	5 48.2	2 1.2
	Mich	59	4C	5 44.3	5 1.2	8 10.1	3 17.3	3 0.5	9 10.3	9 10.9	0 1.8	4 0.7	7 <0.2	9	5 97.4	0 6.6	2 0.1	8 1.7	0 2.1	5 0.0	2 23	0 1.7	1 0.5	2 0.1	5	7 15.6	6 51.6	0 1.3
		59 2 ₉	c	3 42.1	2 1.0	9 12.3	1 20.0	9 0.4	8 9.9	5 10.5	7 2.1	1.1 1.1	0 0.2	0.0	6 100.0	5 6.3	4 0.1	8 2.1	8 2.5	7 0.0	2 2.2	5 1.7	5 0.6	9 0.2	- 0.0	8 15.9	5 47.0	5 1.7
		59 72	70	9 43.0	4 1.2	11.1	1 19.0	9 0.5	2 9.4	5 12.1	7 1.5	1 1.0	4 <0.2	5	1 99.3	7 6.4	4 0.1	1 1.9	5 2.3	0.0 0	4 2.1	7 1.9	8 0.4	5 0.1	6	6 15.7	3 47.0	3 1.5
		59 1	10	41.0	1.2	12.2	19.2	0.7	8.5	12.6	1.2	1.3	0.2	0.0	98.5	6.2	0.1	2.2	2.4	0.10	1.9	2.0	0.3	0.2	0.0	15.8	1.4	1.7
		21 4.2	4c	42.86	1.84	10.17	16.29	1.07	10.83	12.35	2.05	0.95	<0.20		98.44	6.45	0.21	1.80	2.05	0.14	2.42	1.99	0.60	0.18	'	15.85	54.21	1.55
	site	21 25	30	40.28	2.11	13.07	13.35	<0.20	12.18	13.00	2.38	0.88	<0.20		97.39	6.05	0.24	2.32	1.68	'	2.73	2.09	0.69	0.17	'	15.99	61.91	1.95
	Hbl And	21 7-	71	40.93	2.37	11.24	19.30	1.01	9.34	10.88	1.90	1.06	<0.20		98.13	6.26	0.27	2.03	2.47	0.13	2.13	1.78	0.56	0.21	'	15.87	46.32	1.74
	Carpa -	21 72	7C	41.61	2.41	10.97	18.12	0.75	9.95	10.68	2.15	0.99	<0.20		97.70	6.34	0.28	1.97	2.31	0.10	2.26	1.74	0.63	0.19	'	15.83	49.46	1.66
		21 12	10	39.32	2.08	14.17	16.40	<0.20	10.95	11.33	2.51	0.81	<0.20		<i>TT.</i> 77	5.95	0.24	2.52	2.07	'	2.47	1.84	0.74	0.16	'	16.02	54.34	2.05
		32 5 2	20	39.52	3.56	14.34	13.94	0.21	11.76	11.58	2.45	1.14	<0.20		98.54	5.88	0.40	2.51	1.73	0.03	2.61	1.85	0.71	0.22	'	15.94	60.05	2.12
	esite	32 1	4C	41.00	3.94	13.06	13.99	<0.20	12.10	11.50	2.28	0.96	<0.20		99.05	6.05	0.44	2.27	1.72	'	2.66	1.82	0.65	0.18	'	15.82	60.66	1.95
	altic And	32 3-	JC	41.73	3.65	12.38	14.62	0.25	12.16	11.44	2.33	0.99	<0.20		99.64	6.13	0.40	2.14	1.80	0.03	2.66	1.80	0.66	0.19	'	15.84	59.72	1.87
	ıga - Basi	32 32	c	40.87	3.86	12.62	14.64	0.23	11.94	11.59	2.25	0.98	<0.20		99.00	6.05	0.43	2.20	1.81	0.03	2.63	1.84	0.64	0.19	'	15.84	59.23	1.95
	Cruz Cor	32 72	70	40.84	3.93	12.84	13.29	0.33	12.29	11.54	2.44	0.98	<0.20		98.54	6.18	0.45	2.29	1.68	0.04	2.77	1.87	0.71	0.19	'	16.21	62.23	1.82
	-	32 12	10	41.34	3.65	12.23	14.76	0.26	12.24	11.30	2.33	0.93	<0.20		99.08	6.11	0.41	2.13	1.83	0.03	2.69	1.79	0.67	0.18	'	15.84	59.62	1.89
		Sample No.	Analysis INO.	SiO,	TiO,	Al_2O_3	$Fe_2O_3(T)$	MnO	MgO	CaO	Na_2O	K_2O	C	0=CI	Total	 Si	Ti	AI	Fe^{2+}	Mn	Mg	Ca	Na	К	ū	Total	# Mg	Al ^{vi}

Hornblende analyses cont.

	ite	T4	2c	43.45	1.25	10.07	17.38	0.35	10.38	11.01	1.66	0.91	<0.20		96.59	6.58	0.11	1.93	2.48	0.05	2.17	1.76	0.37	0.12	'	15.60	46.63	1.42
	-Bt Dior	T4	2r	43.74	1.26	9.86	17.08	0.57	10.42	11.19	1.74	0.95	<0.20		96.86	6.63	0.14	1.81	2.22	0.04	2.36	1.80	0.49	0.18	'	15.70	51.56	1.37
	ldH - on	T4	1c	43.69	1.22	10.16	17.13	0.65	11.16	11.09	1.71	0.98	0.20	0.05	97.95	6.65	0.14	1.76	2.17	0.07	2.36	1.82	0.51	0.18	0.01	15.69	52.10	1.35
	Gale	T4	lr	42.93	1.35	10.25	17.92	0.64	10.48	11.08	1.79	0.90	<0.20		97.45	6.57	0.14	1.80	2.16	0.08	2.50	1.79	0.50	0.19	'	15.78	53.73	1.43
		H22	5c	45.72	1.26	9.28	16.89	0.42	11.36	10.87	1.47	0.80	<0.20		98.25	6.80	0.14	1.63	2.10	0.05	2.51	1.73	0.42	0.15	1	15.58	54.49	1.20
		H22	5r	45.38	1.34	10.45	14.79	0.49	11.27	10.83	1.88	0.79	<0.20		97.35	6.74	0.15	1.83	1.84	0.06	2.50	1.72	0.54	0.15	'	15.57	57.58	1.26
		H22	4r	46.19	1.19	9.10	15.92	0.45	11.78	10.92	1.40	0.75	0.21	0.05	97.85	6.85	0.13	1.59	1.97	0.06	2.60	1.73	0.40	0.14	0.05	15.54	56.87	1.15
	t Diorite	H22	4c	44.81	1.14	9.94	16.51	0.57	11.43	10.92	2.01	0.81	0.23	0.05	98.33	6.68	0.13	1.74	2.06	0.07	2.54	1.74	0.58	0.15	0.06	15.75	55.22	1.32
	- Hbl-B	H22	3r	47.44	1.07	7.89	15.21	0.57	12.37	10.59	1.48	0.48	<0.20		97.22	7.03	0.12	1.38	1.88	0.07	2.73	1.68	0.43	0.09	,	15.45	59.18	0.97
Centres	Prospect	H22	3c	45.54	1.26	9.66	16.84	0.50	11.57	10.98	1.75	0.70	<0.20		98.89	6.73	0.14	1.68	2.08	0.06	2.55	1.74	0.50	0.13	,	15.63	55.03	1.27
trusive	biquillay	H22	2r	47.32	0.94	8.73	15.83	0.39	12.20	10.84	1.80	0.66	<0.20		98.81	6.93	0.10	1.51	1.94	0.05	2.66	1.70	0.51	0.12	'	15.55	57.86	1.07
alised In	Mic	H22	2c	45.88	1.23	9.68	16.54	0.38	11.67	10.83	2.02	0.67	<0.20		99.05	6.75	0.14	1.68	2.04	0.05	2.56	1.71	0.58	0.13	'	15.66	55.69	1.25
Miners		H22	lr	46.15	1.17	9.26	15.90	0.42	11.82	10.98	1.75	0.66	<0.20		98.31	6.82	0.13	1.61	1.97	0.05	2.60	1.74	0.50	0.12	'	15.60	56.99	1.18
Miocene		H22	lc	47.47	1.07	8.65	15.84	0.43	11.93	11.05	1.40	0.69	<0.20		98.64	6.96	0.12	1.49	1.94	0.05	2.61	1.74	0.40	0.13	'	15.47	57.31	1.04
ly-Mid		Chail	5c	44.88	1.31	9.66	13.19	0.64	13.88	10.81	1.87	0.78	<0.20		97.18	 6.66	0.15	1.69	1.64	0.08	3.07	1.72	0.54	0.15	1	15.72	65.21	1.34
Ear		Chail (4r1	45.73	1.54	9.11	13.75	0.55	13.68	10.79	2.28	0.83	<0.20		98.43	6.72	0.17	1.58	1.69	0.07	2.99	1.70	0.65	0.15	'	15.76	63.93	1.28
		Chail (4c	44.92	1.41	9.27	17.03	0.64	11.74	10.91	1.90	0.93	<0.20		98.85	6.67	0.16	1.62	2.11	0.08	2.60	1.73	0.55	0.18	,	15.72	55.13	1.33
	rite	Chail (4r	45.62	1.40	9.01	13.13	0.67	13.94	11.24	1.97	0.92	<0.20		98.05	6.71	0.15	1.56	1.61	0.08	3.06	1.77	0.56	0.17	,	15.72	65.43	1.29
	bl-Bt Dic	Chail (3c	45.66	1.11	8.14	15.86	0.52	12.80	10.93	1.92	0.68	<0.20		97.67	6.81	0.12	1.43	1.98	0.07	2.85	1.75	0.56	0.13	,	15.70	58.99	1.19
	onga - H	Chail (3r	45.13	1.34	8.56	14.25	0.75	13.76	11.26	2.05	0.81	<0.20		98.00	6.70	0.15	1.50	1.77	0.09	3.04	1.79	0.59	0.15	,	15.80	63.26	1.30
	Minas C	Chail (2c	45.97	1.31	8.59	15.03	0.78	13.57	11.03	2.18	0.76	<0.20		99.33	6.74	0.14	1.48	1.84	0.10	2.96	1.73	0.62	0.14	,	15.79	61.67	1.26
		Chail (2r	46.61	1.20	8.59	14.48	0.66	13.80	10.69	1.97	0.63	<0.20		98.79	6.82	0.13	1.48	1.77	0.08	3.01	1.67	0.56	0.12	'	15.68	62.93	1.18
		Chail (lc	44.80	1.29	9.01	15.72	0.56	12.79	10.78	2.25	0.74	<0.20		98.08	6.67	0.14	1.58	1.96	0.07	2.84	1.72	0.65	0.14	,	15.80	59.18	1.33
		Chail (lr	45.34	1.41	8.78	15.71	0.51	12.62	10.75	2.13	0.66	<0.20		98.10	6.74	0.16	1.54	1.95	0.06	2.79	1.71	0.62	0.13	'	15.74	58.87	1.26
	L	Sample No.	Analysis No.	SiO_2	TiO_2	Al_2O_3	$Fe_2O_3(T)$	MnO	MgO	CaO	Na_2O	K_2O	C	0=C1	Total	Si	Ti	AI	Fe^{2+}	Mn	Mg	Ca	Na	K	ū	Total	# Mg	AI ^{VI}

Hornblende analyses cont.

						Mioc	ene Vol	canic Ui	nits					
		Rega	lado Voc	lanic Seq	uence - F	Ibl Basal	tic Ande:	site		Hui	ambos Fn	n - Hbl-B	t Andesit	9
Sample No.	64	64	64	64	64	64	64	64	64	63	63	63	63	63
Analysis No.	lr	1c	2c	2r	3r	3c	4r	4c	5c	lr	1c	2c	2r	3c
SiO_2	45.10	43.97	44.53	44.69	43.67	45.64	45.65	45.51	43.34	44.44	44.16	45.11	44.61	43.98
TiO_2	1.71	1.86	1.93	1.89	2.13	1.87	2.05	1.98	2.08	2.40	1.80	1.72	1.76	1.85
Al_2O_3	12.11	13.56	11.92	11.98	11.20	9.94	9.62	9.35	12.99	11.32	11.77	9.58	9.64	11.75
$Fe_2O_3(T)$	12.37	11.91	9.73	9.56	12.39	15.39	15.01	14.56	11.31	10.57	9.85	15.37	16.02	14.02
MnO	0.48	<0.20	0.25	0.22	<0.20	0.37	0.31	0.32	<0.20	<0.20	0.21	0.61	0.40	0.52
MgO	13.40	13.52	14.39	14.95	13.67	12.06	12.56	12.67	13.96	14.48	15.06	11.66	11.67	11.97
CaO	10.95	11.45	11.22	11.29	11.37	10.70	10.67	10.74	11.29	11.09	11.08	10.64	10.59	10.96
Na_2O	2.01	2.20	2.33	2.47	2.72	1.65	2.00	2.04	2.34	2.15	2.61	1.47	1.65	2.01
K_2O	0.37	0.57	0.62	0.62	0.54	0.96	0.89	1.00	0.56	0.47	0.56	1.05	1.01	0.65
CI	<0.20	<0.20	<0.20	<0.20	<0.20	0.24	0.24	<0.20	<0.20	<0.20	<0.20	0.22	<0.20	<0.20
0=CI						0.06	0.05					0.05		
Total	98.51	99.19	96.93	97.73	96.76	98.74	98.92	98.32	97.86	97.07	97.16	97.38	97.53	97.83
Si	6.53	6.33	6.50	6.48	6.42	6.71	6.70	6.71	6.32	6.50	6.45	6.74	6.68	6.50
Ϊ	0.19	0.20	0.21	0.21	0.24	0.21	0.23	0.22	0.23	0.26	0.20	0.19	0.20	0.21
AI	2.07	2.30	2.05	2.05	1.94	1.72	1.66	1.62	2.23	1.95	2.03	1.69	1.70	2.05
Fe^{2+}	1.50	1.43	1.19	1.16	1.52	1.89	1.84	1.79	1.38	1.29	1.20	1.92	2.01	1.73
Mn	0.06	'	0.03	0.03	1	0.05	0.04	0.04	'	1	0.03	0.08	0.05	0.07
Mg	2.89	2.90	3.13	3.23	3.00	2.64	2.74	2.78	3.03	3.15	3.28	2.59	2.60	2.64
Ca	1.70	1.77	1.76	1.75	1.79	1.68	1.67	1.70	1.76	1.74	1.73	1.70	1.70	1.73
Na	0.56	0.61	0.66	0.69	0.77	0.47	0.57	0.58	0.66	0.61	0.74	0.43	0.48	0.58
х	0.07	0.10	0.12	0.11	0.10	0.18	0.17	0.19	0.10	0.09	0.11	0.20	0.19	0.12
ū	'	'	'	'	'	0.06	0.06	'	'	'	'	0.06	'	'
Total	15.57	15.68	15.65	15.72	15.84	15.61	15.67	15.68	15.72	15.62	15.77	15.59	15.66	15.65
# Mg	65.88	66.90	72.49	73.59	66.29	58.26	59.85	60.80	68.73	70.94	73.15	57.47	56.48	60.33
Al ^{vI}	1.47	1.67	1.50	1.52	1.58	1.29	1.30	1.29	1.68	1.50	1.55	1.26	1.32	1.50

ins
gra
sne
0X
pyr
Ē
S
y St
Į.
an
ě
2
do
5
Ē
n
Ŧ
S
Г

																	Gabbi	roic Dyk	e											
						Sc	outh Gale	IdH - out	Gabbro							Š	outh Galer	io - Hbl C	abbro					East Gal	leno - Gał	obroic Dic	orite			
Sample No	. 16	16	16	16	16	16	16	16	16	16	16	16	16 1	6 1	6 5:	55 55	55	55	55	55	57	57	57	57	57	57	57	57	57	57
Analysis Nc). Ir	1c	lr	lr1	2c	3с	3r	4r	4c	4r2	5c	5r	7r 7	7c 7	r2 1:	r lc	2c	2r	3c	3r	١r	lc	lrl	lcl	2r	2c	2r1	3r	3c	4c
	Oxide W	eight Pe	rcent																											
SiO_2	51.48	50.46	50.05	49.14	51.41	51.02	51.86	50.50	52.56	50.87	51.95	50.73 4	19.90 5	1.24 50	0.47 51	.44 50.	23 52.2	1 51.8	51.49	50.71	51.67	51.31	52.29	51.56	51.64	51.64	51.43	51.24	51.31	51.49
TiO_2	0.53	0.61	0.87	0.96	0.62	0.61	0.60	0.76	0.24	0.54	0.39	0.81	0.88	0.72	0.96 0	0.71 0.	65 0.5	2 0.6	3 0.71	0.81	0.78	0.80	0.41	0.64	0.76	0.71	0.75	0.75	0.65	0.72
Al_2O_3	1.54	3.86	3.60	4.22	2.61	2.95	1.83	3.99	1.75	2.56	2.04	3.70	4.69	3.32	3.68 3	.89 5.	12 2.5	8 3.7	3.95	4.65	2.47	2.23	1.93	2.17	1.66	1.84	2.03	2.07	2.18	1.80
$\operatorname{Fe}_2O_3(T)$	10.89	9.45	10.56	10.34	9.62	10.03	10.12	10.97	10.26	10.14	10.28	11.06	9.71	9.57 10	0.78 8	.46 8.	55 8.2	2 8.1	7 8.00	8.50	10.65	10.54	12.04	11.37	11.18	10.66	10.95	10.99	10.69	10.77
MnO	<0.20	0.28	0.39	0.27	0.38	0.20	<0.20	<0.20	0.30	0.30	0.45	<0.20 <	0.20	0.31	0.30 0	.36 0.	29 0.4	1 0.2	0.23	0.29	0.31	<0.20	0.35	0.30	0.29	0.34	0.38	0.46	0.38	0.33
MgO	14.40	13.99	13.20	13.41	14.44	13.73	14.45	13.55	14.91	13.87	14.39	13.30 1	3.58 1.	3.75 1:	3.40 13	.54 13.	28 14.5	4 13.93	2 13.88	13.59	13.84	14.14	13.43	14.10	13.86	14.22	13.99	14.17	13.81	14.29
CaO	20.10	20.72	20.61	20.46	20.11	20.40	20.33	20.12	20.12	19.95	19.98	20.34 2	1.54 2.	0.50 21	0.30 20	50 20.	06 19.8	2 20.6	21.05	21.37	19.72	19.67	19.37	19.39	19.85	20.03	19.69	19.25	19.45	19.40
Na_2O	<0.40	<0.40) <0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40 <	0.40 <	0.40 <	0.40 0	.64 0.	63 0.7	2 0.6	3 0.72	. 0.58	<0.40	<0.40	<0.40	<0.40	<0.40	0.52	<0.40	0.45	<0.40	<0.40
K_2O	<0.20	<0.20	∩ <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	0.20 <	0.20 <	0.20 <0	.20 <0.	20 <0.2	0 <0.2) <0.2(<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 .	<0.20
ū	<0.20	<0.20	∩ <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	0.20 <	0.20 <	0.20 <0	.20 <0.	20 <0.2	0 <0.2) <0.2(<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total	99.12	99.83	99.75	98.85	99.30	90.06	99.47	100.44	100.58	98.36	99.97 1	00.41 10	0.80 9.	9.86 10	0.32 99	.59 98.	87 99.0	9.66 6	1 100.08	100.56	99.73	99.30	99.89	99.89	99.52	100.02	99.44	99.41	98.61	98.88
	Number	r of aton	ns per for	mula un.	it (6 oxyg	iens)																								
Si	1.95	1.89	1.89	1.87	1.93	1.92	1.95	1.89	1.95	1.93	1.94	1.90	1.86	1.92	1.89 1	.92 1.	89 1.9	5 1.9	1.91	1.88	1.94	1.93	1.96	1.94	1.95	1.94	1.94	1.93	1.95	1.95
Ti	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.03 0	0.02	02 0.0	1 0.0	0.02	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
AI	0.07	0.17	. 0.16	0.19	0.12	0.13	0.08	0.18	0.08	0.11	0.09	0.16	0.21	0.15	0.16 0	0.17 0.	23 0.1	1 0.1	6 0.17	0.20	0.11	0.10	0.09	0.10	0.07	0.08	0.09	0.09	0.10	0.08
Fe^{2+}	0.34	0.30	0.33	0.33	0.30	0.32	0.32	0.34	0.32	0.32	0.32	0.35	0.30	0.30	0.34 0	.26 0.	27 0.2	6 0.2	5 0.25	0.26	0.33	0.33	0.38	0.36	0.35	0.33	0.35	0.35	0.34	0.34
Mn	1	0.01	0.01	0.01	0.01	0.01	'	'	0.01	0.01	0.01		,	0.01	0.01 0	0.01	0.0 0.0	1 0.0	0.01	0.01	0.01	'	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Mg	0.81	0.78	0.74	0.76	0.81	0.77	0.81	0.75	0.83	0.79	0.80	0.74	0.75	0.77	0.75 0	.75 0.	74 0.8	1 0.7	0.75	0.75	0.77	0.79	0.75	0.79	0.78	0.79	0.79	0.80	0.78	0.81
Ca	0.81	0.83	0.83	0.83	0.81	0.82	0.82	0.81	0.80	0.81	0.80	0.81	0.86	0.82	0.81 (.82 0.	81 0.7	9 0.8	0.8	. 0.85	0.79	0.79	0.78	0.78	0.80	0.80	0.79	0.78	0.79	0.79
Na	'	'		'	'	'	'	'	'	'	'		,	,	-	.05 0.	05 0.0	5 0.0	5 0.05	0.04	'	'	'	'	'	0.04	'	'	'	
K	'	'		'	'	'	'	'	'	,	,		,		,						'	'	'	'	'	•	•	,	,	'
Ū	'			'	'	'	•	'	•	•	•										'	'	'	'	•	•	•	•	•	'
Total	4.01	4.03	4.02	4.01	4.00	4.00	4.00	4.02	4.02	4.00	4.02	4.01	4.03	4.01	4.02	.00	01 4.0	1 4.0	(0.4.0)	4.02	4.00	4.01	3.99	4.01	4.01	4.02	4.00	4.02	3.99	4.00
En	41.18	40.73	38.64	39.36	41.83	40.23	41.59	39.65	42.25	40.72	41.38	38.98 3	9.34 40	0.40 3	9.17 40	.76 40.	65 43.2	4 41.5	41.26	40.10	40.50	41.36	39.15	40.78	40.08	40.86	40.54	41.16	40.61	41.45
\mathbf{Fs}	17.48	15.91	17.99	17.47	16.26	16.81	16.34	18.01	16.79	17.19	17.32	18.17 1	5.79 10	6.29 1	8.18 14	.89 15.	18 14.4	0 14.0	3 13.75	14.58	18.00	17.30	20.27	18.93	18.62	17.75	18.43	18.67	18.27	18.08
Wo	41.34	43.36	43.37	43.17	41.91	42.96	42.06	42.34	40.96	42.09	41.30	42.84 4	4.88 4.	3.31 4:	2.64 44	.35 44.	17 42.3	6 44.4	(44.99	45.32	41.50	41.35	40.58	40.29	41.29	41.40	41.03	40.18	41.12	40.47
# Mg	70.21	72.51	69.02	69.81	72.78	70.93	71.79	68.77	72.15	70.92	71.38	68.20 7	1.36 7	1.92 6	8.91 74	.05 73.	46 75.9	2 75.2	3 75.54	. 74.01	69.85	70.51	66.53	68.86	68.83	70.39	69.47	69.68	69.72	70.27
	r = analy	vsis at gra	ain rim; c	= analysi	s at grain	core; <0.2	20 = belo	w detectio	on limit; -	- = below	detection	limit																		

cont.	
analyses	
Pyroxene a	

									Palaeo	gene Igi	neous U	nits				N	Aiocene	Barren	Intrusio	IS				Miocene	Volcani	ic Units			
	No	rth Gale	no - Gabb	roic Dior	ite	East M C	onga - H	ThI MD		Cru	z Conga	- Basltic	Andesite			Michie	puillay Re	gion - Hb	I-Bt Qtz I	Diorite	Re	galado Ve	oclanic Se	duence - I	Hbl Basal	tic Andes	ite Hu	ambos Fr	
Sample No.	87	87	87	87	87	46	46	46	32	32	32	32	32	32	32 :	59 5	69 5	9 5	9 59	59		54 6	4 6	4 64	4 6	4 6	4 6	63	I
Analysis Nc	. Ic	1r	1c1	2r	2c	١r	1c	2c	lc	2c	3c	4c	5c	6c	7c	lc	5 0	с 3	r 4c	5c		c 2	5 2	г 3с	3	r 41	r 16	. Ir	1
SiO_2	52.09	50.14	51.90	51.02	52.62	51.79	51.35	52.48	50.06	50.36	49.97	49.73	49.01	47.79 5	50.05 5	51.13 5	0.89 5	0.23 50	.64 53.	13 50.	5 62	2.62 5	4.22 5.	4.15 54	1.94 5:	2.58 54	1.09 54	54 53.	77
TiO_2	0.21	1.02	0.23	0.93	0.28	0.27	0.20	<0.20	1.22	0.91	1.03	0.86	1.26	1.71	1.10	0.60	0.69).82 (.60 0.	35 0.	77	0.53	0.30	0.34 (.32	0.57 0	0.40 0	.24 <0.	20
AI_2O_3	0.64	3.58	0.62	3.50	0.88	1.60	1.34	0.64	4.44	3.78	4.12	4.47	4.92	6.02	3.66	5.39	5.35	5.90	5.37 2.	85 5.	19	2.28	0.97	1.13 1	.24	2.47 1	.31 1	.35 1.	10
$Fe_2O_3(T)$	18.20	12.27	17.88	11.56	16.16	9.16	9.73	8.00	9.38	9.78	10.47	12.01	9.35	9.94	9.54	5.23	5.18	5.71	5.30 4.	43 4.	95	8.19	8.93	7.86 8	.50	7.94 9	6 60.0	.34 9.	26
MnO	0.40	0.46	0.36	0.28	0.56	0.84	1.11	0.89	0.46	0.31	0.49	0.97	0.21	<0.20	0.42 <	<0.20 <	0.20 <	0.20 <(0.20 <0	20 <0.	20	0.36	0.55	0.36 (.50 ().36 (0.37 0	0 69.	94
MgO	9.81	11.27	10.07	12.04	10.82	13.15	12.70	14.25	12.88	13.34	11.59	10.86	12.43	12.02	13.00 1	[3.94]	4.39 1	3.85 14	4.23 15.	36 14.	26 1	4.78 1	5.50 1:	5.87 16	5.02 1-	4.63 15	5.55 13	.60 13.	35
CaO	17.72	19.74	18.03	19.58	18.58	21.35	21.37	21.88	21.97	21.81	21.81	21.60	22.05	21.97 2	21.78 2	22.41 2	2.31 2	2.21 2	1.65 21.	93 22.	17 2	0.64 1	9.08 1	9.04 15	9.23 20	0.26 18	3.54 20	.52 20.	42
Na_2O	<0.40	<0.40	09.0	0.72	0.87	0.83	0.60	0.46	0.49	0.64	0.61	0.65	0.47	0.53 <	<0.40 <	<0.40	0.91).54 (0.61 <0.	40 0.	79	0.83	0.55 <	0.40 (.57 <	0.40 (0.62 0	.56 <0.	40
K_2O	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	<0.20 <	<0.20 <	0.20 <).20 <(0.20 <0.	20 <0.	20 <	0.20 <	0.20 <	0.20 <0	0.20	0.20 <(0.20 <0	.20 <0.	20
ū	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 <	<0.20 <	<0.20 <	0.20 <	0.20 <(0.20 <0.	20 <0.	20	0.20 <	0.20 <	0.20 <0	.20 ⊲	0.20 <(0.20 <0	.20 <0.	20
Total	99.44	98.94	77.66	69.66	100.81	99.04	98.50	98.76	101.02	100.98	100.13	101.29	99.81 1	00.13 5	99.83 9	9.24 9	9.85 9	950 98	3.59 98.	52 99.	38 10	0.30 10	0.18 9	9.14 101	.40 9	9.20 100	00 100	.87 99.	50
Si	2.02	1.92	2.00	1.92	2.00	1.96	1.96	1.98	1.86	1.88	1.88	1.87	1.85	1.80	1.88	1.89	1.87	1.86	1.88 1.	96 1.	88	1.95	2.00	2.01 2	5.00	1.96 1	.99 2	.01 2.	01
ï	0.01	0.03	0.01	0.03	0.01	0.01	0.01	'	0.03	0.03	0.03	0.02	0.04	0.05	0.03	0.02	0.02	0.02	0.02	01 0.	02	0.01	0.01	0.01 0	0.01	0.02 (0.01 0	.01	,
AI	0.03	0.16	0.03	0.16	0.04	0.07	0.06	0.03	0.19	0.17	0.18	0.20	0.22	0.27	0.16	0.23	0.23	0.26 (0.24 0.	12 0.	23	0.10	0.04	0.05 0	0.05	0.11 0	0.06 0	.06 0.	05
Fe^{2+}	0.59	0.39	0.58	0.36	0.51	0.29	0.31	0.25	0.29	0.30	0.33	0.38	0.29	0.31	0.30	0.16	0.16	0.18 (0.16 0.	14 0.	15	0.25	0.28	0.24 0).26	0.25 (0.28 0	.29 0.	29
Mn	0.01	0.01	0.01	0.01	0.02	0.03	0.04	0.03	0.01	0.01	0.02	0.03	0.01	,	0.01	,	,	,	,	,	,	0.01	0.02	0.01	.02	0.01 0	0.01	.02 0.	03
Mg	0.57	0.64	0.58	0.68	0.61	0.74	0.72	0.80	0.71	0.74	0.65	0.61	0.70	0.67	0.73	0.77	0.79).76 (0.79 0.	85 0.	62	0.81	0.85	0.88 (.87	0.81 (0.85 0	.75 0.	74
Ca	0.73	0.81	0.75	0.79	0.76	0.87	0.88	0.89	0.88	0.87	0.88	0.87	0.89	0.89	0.88	0.89	0.88).88 (.86 0.	87 0.	88	0.82	0.75	0.76 (.75 ().81 (0.73 0	.81 0.	82
Na	'	'	0.05	0.05	0.06	0.06	0.04	0.03	0.04	0.05	0.04	0.05	0.03	0.04		,	0.07	0.04	0.04	-0.	36	0.06	0.04	'	.04		0.04 0	.04	
K	'	'		'	•	'	'	'	'	•	'	•	•	•				,							,		,		
ū	'	'	'	'	•	,	'	'	'	'	'	'	,	,	,				,	,			,	,	,	,	,	,	
Total	3.98	3.99	4.00	4.00	4.01	4.03	4.03	4.02	4.03	4.04	4.02	4.03	4.03	4.04	4.02	3.99	4.03	4.01	1.01 3.	98 4.	10	4.02	3.99	3.98 3	. 99	3.99 3	3.99 3	.98 3.	98
ĥ	29.74	34.55	30.28	36.74	32.23	38.53	37.19	40.74	37.64	38.46	34.67	32.23	36.95	35.99 3	37.96	12.25 4	3.16 4	94	343 45	69 43	24	2.93 4	4.87 4	6.45 45	90 4	3.21 45	46 40	02 39	55
\mathbf{Fs}	31.64	21.93	30.76	20.29	27.96	16.47	17.83	14.29	16.16	16.32	18.41	21.65	15.94	16.70 1	16.33	8.91	8.72	0.70	7 20.0	40 8.	14	3.95 1	5.41 1	3.49 14	1.48 1	3.75 15	53 16	.57 16	76
Wo	38.62	43.52	38.96	42.98	39.81	45.00	44.99	44.97	46.20	45.22	46.92	46.12	47.11	47.31 4	45.72 4	18.85 4	8.12 4	8.35 40	7.49 46.	91 48.	35 4	3.12 3	9.72 4	0.06 35	9.62 4:	3.04 35	01 43	.41 43.	48
# Mg	48.99	62.06	50.11	64.97	54.39	71.88	69.94	76.04	70.97	70.85	66.35	61.69	70.32	68.30	70.83 8	82.59 8	3.19 8	1.21 82	2.71 86.	06 83.	11 7	6.27 7	5.56 7	8.27 77	7.06 7	5.65 75	5.30 72	.18 71.	66

APPENDIX C2

Raw whole rock geochemical data

ANALYTICAL TECHNIQUES FOR X-RAY FLUORESCENCE

Samples selected for X-ray fluorescence (XRF) were crushed in a clean tungsten-carbide bowl using a Rocklabs tema mill. Splits of the samples were analysed by the Advanced Analytical Centre (AAC) at James Cook University. Approximately 10 g of each sample was weighed into a porcelain crucible and heated at 1000°C for 10 hours to determine the loss on ignition (LOI). Approximately 0.6 g of the heated samples were then pressed into disks and analysed using the Siemens SRS-3000 X-ray fluorescence (XRF) spectrometer. Two duplicate samples of S-59 were run to establish variance and analytical error. One of these (S-59 Duplicate 1) was also crushed in a tungsten-carbide bowl, whereas the other (S-59 Duplicate 2) was crushed in a chromium-steel bowl. Duplicate samples show minimal variations and are within analytical error.

	96 0		60.85	0.29 16.29	4.68	0.11	1.90	5.99 2.00	2.11	0.23	5.08	100.99	2	71	15	∞	95	2 8	2	893 255	629 18	<1.0	6.0	2.9	82.0	11.0	2.4 2.7	16.70	32.90	na	3.54	0.53	10 Da	0.91	<0.20	0.10	56.82	17.71	
	0 35	Bt Diorite Hbl	59.38	0.60	5.39	0.11	2.43	6.44 3.67	1.93	0.23	2.22	99.49	ç	67	24	10	103	58	$\overline{\vee}$	708	20	<1.0	5.0	2.5	78.0	12.0	4.4 2.0	15 90	36.10	na	3.82	1.23	na	0.86	<0.20	0.07	66.08	12.30	
	Carpa	oc-co Diz Diorite Hbl-	63.52	0.48 16.61	3.88	0.07	1.79	4.50	2.44	0.20	2.92	100.14	5	17	17	2	42	76	ŝ	864	623 21	<1.0	5.0	3.0	92.0	16.0	2.2	15.00	26.70	14.70	3.40	6/.0 8/0	na	0.86	<0.20	0.12	38.94	00.11	
	ora Patricia La e 11	5-11 bl Diorite Hbl (61.30	0.52 17.43	4.83	0.11	1.80	5.70	1.90	0.23	3.08	100.58	č	97	13	2	70	09	-	827	584 21	<1.0	5.0	3.1	110.0	17.0	0.4 0.02	20.70	37.30	18.00	3.66	1.03	0.58	1.27	<0.20	0.10	34.35	10.90	
Volcanic	ruz Conga Aur	5-32 saltic Andesite H	54.90	1.10	6.88	0.24	1.62	6.42 4.55	2.79	0.46	3.15	100.54	c	D 4	17	5	82	74	$\overline{\vee}$	1073	967 23	2.2	29.0	5.0	189.0	28.0	2.4	58 40	106.00	41.50	7.26	7.07	1.13	2.42	0.31	0.08	34.54	10.14	
Eocene - Llama	La Carpa C	3-21 Hol Andesite Bas	56.16	0.04 18.54	6.45	0.21	2.06	6.75 4.40	2.04	0.31	2.06	19.66	c	0 4	19	8	114	59	2	902	20	<1.0	5.0	3.6	111.0	25.0	2.1	34.10	65.10	26.60	5.50	8C.1 87.0	0.98	2.70	0.34	0.08	31.00	6.43	
	Conga c 50	Hbl MD	53.34	0.69	7.69	0.16	3.90	1.52	1.09	0.24	4.65	100.60	9	10	5	18	187	27	-	648	816 19	<1.0	4.0	2.6	83.0	19.0 5 5	0.0	23.60	44.30	na	3.96	0.64	r na	1.88	0.28	0.03	42.95 ° 30	86.8	
e Intrusions	East Minas C	5-40 Hbl MD	55.80	0.71	7.39	0.17	3.68	8.19 3.81	2.06	0.23	0.92	100.78	7	10	27	18	174	62	9	803	635 20	<1.0	5.0	2.9	86.0	21.0	0.9 2.0	25 90	48.00	23.00	4.09	0.60	0.85	2.05	0.29	0.10	30.24	6.45	
laeocene-Eocen	ana c 21	Hbl Diorite	56.70	0.04 18.54	7.46	0.26	2.00	5.01	1.67	0.36	2.89	100.26	-	د د	° 1	2	62	39	-	580	99/ 16	11	7.0	3.3	97.0	27.0	4.7 <2.0	25 80	51.00	25.30	5.42	0.90	1.07	2.59	0.35	0.05	29.59 6.66	00.0	
Pa	Cerro Mon c 20	o-∠o Hbl Diorite	57.80	17.35	6.93	0.29	1.83	5.34 3.80	2.05	0.39	3.94	100.29	c	סע	12	9	42	61	$\overline{\vee}$	1228	898 16	<1.0	3.0	3.6	112.0	73.0	2.c 2.0	34.00	60.70	32.20	7.54	1 32	1.78	4.45	0.66	0.07	12.30	11.6	t = Biotite
	N Galeno	o-o/ Gab Diorite	51.13	1.09	10.12	0.15	3.32	9.18	0.94	0.26	3.18	100.74	,	n 0	24	18	184	18	$\overline{\vee}$	373	1/2	<1.0	4.0	3.5	128.0	27.0	0.2	20.00	46.00	na	5.07	1.42	na	2.64	0.40	0.03	21.15	/0.c	l = Hornhlende [,] Bi
	E Galeno	o-∠o Gab Diorite	50.70	16.1	11.09	0.64	3.80	6.92 3.13	2.11	0.52	3.10	100.39	76	000	32	22	185	67	8	701	212	1.8	21.0	5.1	241.0	37.0	9.0 3.1	43.20	82.40	35.10	7.14	1/1	1.28	3.16	0.45	0.14	12.76	9.14	altic Andesite [.] Hh
Dykes	N Galeno	5-1.8 Gabbro	43.17	1.19	10.19	0.12	6.23	8.04 2.88	0.19	0.34	11.31	100.06	02	95 E	30	25	247	$\overline{\vee}$	$\overline{\vee}$	829	620 18	<1.0	11.0	2.4	88.0	18.0	C.C 0.2	24.30	47.10	na	4.32	0.60	na	1.48	0.21	0.00	34.72	10.98	as Andesite = Bas
Gabbroic	S Galeno	Gabbro	49.67	19.90	9.93	0.20	3.82	3.75	0.94	0.18	2.60	101.24	ų	0 2	29	21	222	24	2	621	11	1.0	9.0	2.1	81.0	17.0	4. C 0. C	18 40	36.10	16.90	3.39	1.33	0.77	1.60	0.22	0.03	41.82	60./	t analysed = Microdiorite: Ba
	S Galeno	e c - c Hbl Gabbro	44.37	1.0/	12.21	0.21	4.71	10.03	0.73	0.20	17.7	100.35	c	9 <u>1</u>	33	18	291	14	-	366	17	<1.0	2.0	1.8	57.0	19.0	<2.0	12.70	25.30	13.00	3.26	1.02	69.0	1.67	0.23	0.02	30.63 5 00	60°C	tion limit; na = no oic Diorite: MD =
	S Galeno	5-10 Hbl Gabbro	46.49	18.15	11.59	0.16	4.86	9.41	0.94	0.17	5.66	100.78	0	13	40	25	332	35	×	375	514 17	<1.0	1.0	1.9	51.0	19.0	2.02	10.60	22.70	13.10	3.15	1.11	0.74	1.77	0.24	0.07	27.05	4.00	2.0 = below detec ab Diorite = Gabbi
Suite	Locality Someto Mo	Sample No. Rock Type	wt% SiO ₂	1102 AhO3	$Fe_2O_3(T)$	MnO	MgO	CaO Na-O	K,0	$P_2 \hat{O}_5$	IOI	Total	mdd	5 9	8 0	Sc	>	Rb	Cs	Ba	Ga v	Ta	qN	Ηf	Zr	≻⊧	E D	La	G	PN	Sm	Eu Th	H H	γb	Lu	Rb/Sr	Sr/Y	La _N /YD _N	<u> </u>

Suite	Miocer	ne Barren Intr	rusive Units									Miocene Miner	alised Centres		
Locality		Michiq	quillay Region				Galeno Prospect	Mi	chiquillay Prospec	ıt	Minas Cong	a Prospect		Galeno Prospect	
Sample No. Rock Type	S-54 Hbl-Bt Diorite	S-58 Hbl-Bt Diorite	S-59 Hbl-Bt Qtz Diorite	S-59 (Duplicate 1) Hbl-Bt Qtz Diorite	S-59 (Duplicate 2) Hbl-Bt Qtz Diorite	S-60 Hbl-Bt Diorite	S-T4 Hbl-Bt Diorite	S-H22(244) Hbl-Bt Diorite	S-H22(176) Hbl-Bt Diorite	S-H22(180) Hbl-Bt Diorite	S-Chail Hbl-Bt Diorite	S-Hualy Hbl-Bt Diorite	S-T1 Hbl-Bt Diorite	S-T2 Hbl-Bt Diorite	S-T3 Hbl-Bt Qtz Diorite
wt% SiO.	60.58	58.51	50 77	7 5950	20.84	61.09	58.20	50.51	6190	63.00	05 69	59 70	64.00	65.80	63 90
Ti0,	0.54	0.62	0.65	0.63	0.64	0.55	0.60	0.52	0.56	0.56	0.50	0.55	0.48	0.47	0.46
Al ₂ O ₃	16.13	16.75	17.14	17.06	17.17	17.26	16.17	16.80	16.95	16.46	17.19	16.33	17.47	17.15	16.47
$Fe_2O_3(T)$	4.58	5.56	5.62	2 5.59	5.73	4.91	7.79	4.50	5.17	5.64	4.72	4.86	3.51	2.28	4.40
MnO	0.10	0.12	0.12	2 0.12	0.12	0.12	0.07	0.23	0.08	00.00	0.09	0.17	0.00	00.00	0.10
MgO	1.86	2.64	2.65	8 2.66	2.69	1.55	4.40	0.91	2.26	2.27	1.72	2.33	1.64	1.35	1.57
CaO	5.63	6.08	6.15	8 6.17	6.16	5.71	4.65	4.73	5.48	4.35	5.00	5.65	0.59	2.30	4.20
Na ₂ O	3.11	3.94	4.0	3 3.97	3.88	3.78	3.54	2.44	3.69	3.67	4.27	3.41	2.64	3.43	3.32
K20	2.17	1.97	1.95	9 1.97	1.98	1.86	2.10	2.57	2.34	2.38	2.45	1.16	5.88	3.64	3.32
P_2O_5	0.22	0.22	0.2	3 0.22	0.22	0.22	0.20	0.22	0.23	0.23	0.23	0.21	0.17	0.23	0.21
101	5.63	447	2.50	0.01	2.46	3.62	2.12	7.80	1 40	1 84	1.32	5.06	4.31	3.83	2.60
Total	100.54	100.87	16.001	1 100.33	100.89	100.67	99.84	100.22	100.06	100.40	66'66	99.43	100.69	100.48	100.55
udd															
Cr	7	43	25	8 24	103	7	175	5	45	42	33	41	35	35	46
N	7	20	1	2 13	14	9	46	4	13	12	6	Ξ	10	5	8
°	19	17	27	2 32	12	15	23	24	23	22	21	14	21	20	21
S	8	13	1	3 13	13	7	18	10	10	10	8	8	9	9	9
>	93	123	111	8 119	117	87	146	79	90	94	72	116	80	42	68
Rb	99	60	99	09 (0	09	52	90	100	51	75	72	33	165	81	88
Cs	4	С	(4	2	2	$\overline{\vee}$.03	ŝ	-	2	<1.0	-	4	5	2
Ba	1065	622	671	1 660	658	766	344	529	668	582	723	473	630	606	794
Sr	580	619	705	8 711	705	774	532	230	069	009	643	615	295	491	528
Ga	19	19	15	9 18	19	20	20	21	18	20	19	20	18	18	20
Ta	<1.0	<1.0	<1.6) <1.0	<1.0	<1.0	<1.0	<1.0	1.5	1.2	1.2	<1.0	<1.0	1.3	<1.0
qN	5.0	4.0	4.0) 4.0	5.0	6.0	4.0	6.0	7.0	7.0	5.0	6.0	6.0	7.0	7.0
Hf	3.4	2.3	2.7	7 2.3	3.2	2.8	2.5	3.0	3.0	3.1	3.4	3.0	2.7	3.2	2.4
Zr	89.0	84.0	81.0	0 87.0	84.0	87.0	67.0	95.0	70.0	82.0	93.0	63.0	99.0	85.0	62.0
Y	16.0	12.0	15.0	0 14.0	15.0	11.0	16.0	16.0	14.0	12.0	13.0	13.0	13.0	11.0	10.0
41 1	4.1	3.7	4	5.4.4 5.4	4.1	4.1	80 Q	61 9 6	ν, (20 0	6.1	6.1	20 K	20 C	4.6	5.1
-	0.72	0.7>	172	0.7>	0.7>	0.7>	0.7>	0.7>	0.7>	0.7>	0.75	0.7>	0.7>	0.72	0.7>
La	19.90	15.10	17.2(0 16.80	16.00	17.50	14.70	17.50	16.90	16.90	19.30	17.20	14.40	19.60	16.40
c	37.60	31.40	36.4(35.40	32.20	37.10	29.70	37.40	35.60	33.90	37.70	33.90	30.40	39.90	32.50
PN	na	na	16.9(na -	na	na	15.60	na	16.90	15.80	17.40	16.30	16.20	20.10	15.50
Sn	4.16	3.41	3.45	3.47	3.59	4.01	3.46	3.56	3.40	2.91	3.28	3.18	3.40	3.77	2.97
n fr	0.60	0.1	12.0	0.92	73 U	1.10	1.1/	0.50	CU.I 24 0	0.09	C6.0 240	0.00	0.40	0.70	0.09
H-	0.00			60.0 0	10.0	CC.0	270	70.0	04.0	34.0	14:0	0.54	0.40	94.0	
2 5	1 14	51 I	10.0	2 2	1 22	0 00	0.0	BII IC I	0.06	0.4.0	001	+C.U	0.40	040	0.70
E E	<0.20	<0.20	<0.20	() <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Kb/Sr	0.11	01.0	30.0	80.0 20202	0.0 0	10.0	2000	0.43	0.07	0.13	0.11	0.0 15.71	0.56	0.16	71.0 20.80
1/10	C7.0C	80° I C	17.14	200 0	47.00	00.07	27.00	75 0 75 0	67.64	00.0C	49.40	10.14	60.22	44.04 10.50	08.20
Lan' Y DN	11.0/	70.6	. C.Y	0.87	8.11	06.61	(.4.)	10.6	11.1/	61.21	c/.0I	0.01	80.01	60.01	14.00
_															
_															
															I

Suite			Reg	alado Volcanic	Units (M-L Mi	(0	Huambos Vold	canics (L Mio)
Locality Complexity	Minas Carpa	Yanacocha e Crre	17 0	1 1	Vorth Cajamarca	07 5	67 0	W M Conga
Sample No. Rock Type	3-IM Carpa Hbl-Bt Diorite	o-CLLD Hbl-Bt Diorite	2-01 Hbl Andesite	5-04 Hbl Andesite	5-00 Hbl Andesite	5-00 Hbl Andesite	Hbl-Bt Andesite	5-MC4 Hbl-Bt Andesite
wt%								
SiO_2	62.62	67.90	57.18	60.53	58.57	56.57	59.82	61.77
TiO ₂	0.49	0.38	0.71	0.57	0.68	0.74	0.71	0.54
$A_{2}O_{3}$	16.41	16.85	18.29	16.91	17.76	17.96	17.91	16.80
$Fe_2O_3(T)$	5.66	2.05	6.37	5.29	5.87	6.67	5.76	4.99
MnO	0.07	0.00	0.14	0.11	0.10	0.20	0.10	0.15
MgO	1.74	1.12	3.31	1.91	2.79	2.62	2.46	2.23
CaO	2.88	2.68	7.20	5.66	6.55	7.42	6.49	5.10
Na_2O	3.42	4.68	4.07	3.56	3.85	3.71	4.23	4.01
K_2O	2.78	2.88	1.51	2.10	1.74	1.59	1.87	2.34
P_2O_5	0.22	0.18	0.25	0.23	0.26	0.28	0.27	0.22
LOI	4.06	1.18	1.18	3.95	1.58	2.55	1.21	2.72
Total	100.35	96.66	100.20	100.81	99.75	100.32	100.83	100.88
bpm								
Cr	35	44	22	13	10	11	25	0
Ni	9	5	16	10	12	11	14	6
Co	22	26	23	20	19	18	19	21
Sc	8	5	17	13	13	13	10	6
>	87	68	132	102	120	129	123	101
Rb	87	83	33	2	46	42	47	70
Cs	3	~	~	$\overline{\vee}$	$\overline{\vee}$	$\overline{\vee}$	2	$\overline{\vee}$
Ba	617	895	620	610	534	488	560	1973
Sr	433	805	838	660	718	759	820	594
Ga	20	20	21	19	22	21	22	20
Ta	<1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
qN	7.0	2.0	1.0	4.0	3.0	3.0	3.0	5.0
Hf	3.2	3.6	2.7	2.9	3.2	3.2	2.8	2.5
Zr	93.0	94.0	83.0	86.0	101.0	95.0	105.0	84.0
Y	14.0	7.0	18.0	20.0	15.0	14.0	16.0	12.0
Th	6.3	6.1	2.5	3.7	3.8	3.2	5.9	6.3
n	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.2	2.2
La	18.30	20.20	18.20	20.50	18.60	17.90	22.30	18.20
Ce	36.80	39.00	36.10	42.00	37.80	38.40	41.60	35.50
PN	17.10	16.50	17.60	na	na	na	19.70	na
Sm	3.28	2.62	3.81	4.00	4.00	3.98	3.90	3.41
Eu	1.06	0.78	11.11	1.05	1.0.1	0.81	1.15	0.57
qL	0.45	0.33	0.62	0.61	0.62	0.50	09:0	<0.50
Ho	0.52	0.35	0.77	na	na	na	0.74	na
γb	1.12	0.62	1.65	1.23	1.37	1.29	1.56	66.0
Lu	<0.20	<0.20	0.21	<0.20	0.20	<0.20	0.22	<0.20
Rb/Sr	0.20	0.10	0.04	0.10	0.06	0.06	0.06	0.12
Sr/Y	30.93	115.00	46.56	33.00	47.87	54.21	51.25	49.50
La_N/Yb_N	10.93	21.79	7.38	11.14	9.08	9.28	9.56	12.29

APPENDIX C3

Partial melting modelling calculations and partition coefficients

Element	Basaltic Source*	Olv^{1}	Opx ¹	Cpx ¹	Grt^1	Amp^{1}	$\mathrm{Kfs}^{\mathrm{l}}$	IIm^{1}	Mag^{1}
	(mqq)								
La	10.60	0.0004	0.002	0.10	0.04	0.2	0.10	0.005	0.22
Ce	22.70	0.0005	0.003	0.20	0.08	0.3	0.06	0.006	0.26
Nd	13.10	0.0010	0.007	0.40	0.20	0.8	0.04	0.008	0.30
Sm	3.15	0.0013	0.010	0.60	1.00	1.1	0.04	0.010	0.35
Eu	1.11	0.0016	0.013	0.60	0.98	1.3	4.60	0.007	0.26
Tb	0.62	0.0016	0.019	0.70	7.50	2.0	0.06	0.022	0.28
Yb	1.77	0.0015	0.049	0.60	21.00	1.7	0.04	0.077	0.18
Lu	0.24	0.0015	0.058	0.60	21.00	1.5	0.03	0.100	0.18
Rb	35	0.0100	0.022	0.03	0.03	0.2	2.40		
Sr	514	0.0140	0.017	0.20	0.01	0.4	5.10		
Zr	51	0.4000	0.100	0.35	0.50	0.5	0.02		
Υ	19	0.0015	0.030	0.03	16.00	1.9			
* Data fro	om this study (Sampl	le S16)							
¹ Martin (1987)	x							
OIv = OIi	vine; Opx = Orthopy	yroxene; C _J	px = Cline	pyroxene	; $Grt = Gt$	arnet; Amp	h = Amph	ibole	

Appendix: C3

Kfs = K-feldspar; Ilm = Ilmenite; Mag = Magnetite

	50% Melt	La 1.39	Ce 3.57	02.2 DN 18.0 m/S	Eu 0.30 Eu	Tb 0.19	Yb 0.77	Lu 0.12	Rb 1.24	Sr 40.41	Zr 16.86	Y 7.66
	35% Batch Melt	La 1.95	Ce 4.98	Nd 3.46 2m 1.08	Eu 1.00 Eu 0.40	Tb 0.24	Yb 0.95	Lu 0.14	Rb 1.73	Sr 55.70	Zr 19.87	Y 9.63
	atch Melt 3	3.28	8.23	1.60	0.58	0.33	1.22	0.18	2.89	89.60	24.20	12.96
	: 20% B.	5.02 La	4.61 Ce	8.46 Nd Sm	2.42 5ul).45 Tb	1.51 Yb).22 Lu	5.18 Rb).79 Sr	3.31 Zr	5.86 Y
	10% Batch Melt	La (Ce	PN S	Eu ()	Tb	Yb	Lu (Rb	Sr 15(Zr 28	Y 10
	6% Batch Melt	La 9.02	Ce 21.17	Sm 3.07	Eu 5.02 Eu 1.02	Tb 0.52	Yb 1.67	Lu 0.24	Rb 7.60	Sr 207.46	Zr 30.37	Y 19.17
	S-16	10.60	22.70	13.10	01.6 11.1	0.62	1.77	0.24	35.00	514.00	51.00	19.00
lagi oclase 0.130 0.110 0.070 0.070 0.037 0.037 0.037 0.023 0.060 0.023 0.060 0.250 0.0600	5% Batch Melt	La 10.31	Ce 23.84	Nd 11.90 Nd 2222	Eu 1.07	Tb 0.55	Yb 1.71	Lu 0.24	Rb 8.60	Sr 228.97	Zr 30.93	Y 19.84
t Amphibole P 115 0.20 217 0.20 217 0.20 217 1.10 220 0.20 230 1.50 230 1.50 236 0.45 200 0.45 253 253 253 253 253 253 253 25		.04	.40	./3	.29	.63	.86	.26	.25	.37	.76	.20
Martin, 1987) yroxene Garne 9,0,070 0,098 0,0,098 0,0,098 0,210 0,210 0,210 0,210 0,210 0,210 0,230 0,028 0,028 0,028 0,028 0,028 0,028 0,028 0,028 0,000	2% Batch Melt	La 18	Ce 38	CI DN	+	0	(b 1	u 0	Rb 14	Sr 332	Zr 32	Y 22
logy mphibole mopyroxeme Olivine Garnet meltajoclase meltajoclase negioclase meltajoclase negioclase negioclase 0.003 0.003 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.012 0.019 0.012 0.019 0.0120000000000		I		4 0	<u>,</u> ш		·	Ι	H			
Residual minera 0.04 // 0.055 Cri 0.23 Cri 0.23 Cri 0.23 Cri 0.23 Cri 0.0013 0.0013 0.0013 0.0016 0.0013 0.0016 0.0013 0.0015 0.0015 0.0015 0.0016 0.0016 0.0016 0.0015 0.0015 0.0016 0.0015 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016 0.0015 0.0015 0.0015 0.0016 0.00015 0.0016 0.00015 0.00016 0.00016 0.00015 0.0000015 0.00005 0.00	ch Melt	24.05	48.22	1/.62	1.39	0.66	1.92	0.27	18.24	391.27	33.41	23.12
% 14 15 15 15 15 15 15 15 15 15 15	1% Bat	La	ů.	DN 3	Eu	fL F	γb	Lu	Rb	Sr	Zr	Y

Mantle Melting Model To Generate S-16

Batch Melting Model To Generate S-46

									artz	0.018	0.014	0.016	
									Magnetite Qui	0.22	0.26	0.3	1000
									Ilmenite N	0.005	0.006	0.008	0100
									K feldspar	0.10	0.06	0.04	000
								(9	Amphibole	0.20	0.30	0.80	
								(Martin, 198	Garnet	0.04	0.08	0.20	
								elting calculation	Clinopyroxene	0.10	0.20	0.40	0.0
teralogy	Clinopyroxene	Garnet	Amphibole	K-Feldspar	Ilmenite	Magnetite	Quartz	ues for partial me	Orthopyroxene	0.002	0.003	0.007	0100
Residual Min	0.36	0.04	0.50	0.07	0.02	0.01	0.00	eiitic KD Val	Olivine (0.0004	0.0005	0.0010	00000
% H	36	4	50	7	2	-	0	Archean Thole		La	ပိ	PN	c

Batch Melting Model To Generate Chail

																												1elt	19.0	37.7	17.0	3.4	0.9	0.4	1.2	0.1	55.4	644.9	75.7	14.4
																												50% N	La	Ce	Nd	Sm	Eu	Tb	Yb	Lu	Rb	Sr	Zr	Y
																												Melt	23.79	45.32	18.38	3.59	0.97	0.45	11.11	0.16	64.98	688.83	86.14	13.66
																												35% Batch	La	Ce	PN	Sm	Eu	Tb	Yb	Lu	Rb	Sr	Zr	Y
																												Melt	33.38	58.85	20.27	3.71	0.94	0.43	1.02	0.15	80.99	747.51	102.43	12.83
																												20% Batch	La	Ce	PN	Sm	Eu	Tb	Yb	Lu	Rb	Sr	Zr	Y
																												Melt	45.65	73.48	21.75	3.79	0.92	0.41	0.97	0.14	96.91	792.52	117.20	12.33
	ĺ	Quartz	0.018	0.014	0.016	0.017	0.080	0.019	0.017	0.011																		10% Batch	La	Ce	PN	Sm	Eu	Tb	$\mathbf{Y}\mathbf{b}$	Lu	Rb	Sr	Zr	Υ
		Magnetite	0.22	0.26	0.3	0.35	0.26	0.28	0.18	0.18																														
		Ilmenite	0.005	0.006	0.008	0.010	0.007	0.022	0.077	0.100																		ch Melt	55.92	83.91	22.58	3.83	0.91	0.40	0.95	0.14	107.48	817.11	126.31	12.10
		K feldspar	0.10	0.06	0.04	0.04	4.60	0.06	0.04	0.03	2.40	5.10	0.02															5% Bate	La	Ce	PN	Sm	Eu	Tb	$\mathbf{Y}\mathbf{b}$	Lu	\mathbf{Rb}	\mathbf{Sr}	Zr	Υ
	()	Amphibole	0.20	0.30	0.80	1.10	1.30	2.00	1.70	1.50	0.22	0.36	0.45	1.90	cient																									
	Martin, 198	Garnet	0.04	0.08	0.20	1.00	0.98	7.50	21.00	21.00	0.03	0.01	0.50	16.00	rtition coeffi	0.14690	0.23212	0.55796	0.81250	1.22994	1.55944	1.91214	1.81190	0.29016	0.60952	0.37240	1.60080	Aelt	64.65	91.73	23.11	3.86	0.91	0.40	0.93	0.13	115.00	832.62	132.48	11.96
	calculation (pyroxene	0.10	0.20	0.40	0.60	0.60	0.70	0.60	0.60	0.03	0.20	0.35	0.03	ated bulk pa	La	Ce	PN	Sm	Eu	Tb	Yb	Lu	Rb	Sr	Zr	Y	2% Batch N	La	Ce	PN	Sm	Eu	Tb	Yb	Lu	Rb	Sr	Zr	Y
Quartz	for partial melting	opyroxene Clinc	0.002	0.003	0.007	0.010	0.013	0.019	0.049	0.058	0.022	0.017	0.100	0.030) Calcul																									
0.00	leiitic KD Values	Olivine Orth	0.0004	0.0005	0.0010	0.0013	0.0016	0.0016	0.0015	0.0015	0.0100	0.0140	0.4000	0.0015	altic Source (S-16	10.60	22.70	13.10	3.15	1.11	0.62	1.77	0.24	35.00	514.00	51.00	19.00	h Melt	68.20	94.66	23.29	3.87	0.90	0.40	0.93	0.13	117.74	837.92	134.68	11.91
0	Archean Thoi		La	లి	PN	Sm	Eu	đ	$\mathbf{Y}_{\mathbf{b}}$	Lu	\mathbf{Rb}	Sr	Zr	Y	Primitive Bas	La	Ce	PN	Sm	Eu	τb	Yb	Lu	Rb	Sr	Zr	Υ	1% Batc	La	ç	PN	Sm	Eu	đ	Yb	Lu	Rb	Sr	Zr	Y

Sample Chail Sample Chail 37.70 37.70 3.28 0.95 0.47 1.20 0.47 1.20 643.00 643.00 543.00 13.00

19.05 37.79 17.01 3.49 0.99 0.48 1.20 0.17 5.5.48 644.96 75.71 14.48

																																	et S-59	elt <u>S-59</u>	elt S-59 17.33 17.20 34.77 36.40	elt S-59 17.33 17.20 34.77 36.40 16.57 16.90	elt <u>S-59</u> 17.20 34.77 36.40 16.59 3.47 3.49	elt 5-59 17.33 17.20 34.77 36.40 16.57 16.90 3.49 1.11 3.98	elt <u>\$.59</u> 17.33 17.20 34.77 36.40 16.57 3.49 1.11 0.98 0.98	elt S-59 17.33 17.20 34.77 36.40 16.90 3.47 3.49 1.11 0.98 0.53 1.21 1.21	eit <u>\$.59</u> 34.77 36.40 1.11 0.98 1.11 0.98 1.21 0.53 0.50 0.53 0.17 -0.20	elt 5-59 17.33 17.20 34.77 16.90 34.77 16.90 34.47 3.49 1.11 0.53 1.21 0.20 55.60 60.00 60.00
																																55% M	La	Ce	PN	Sm	Eu	Tb		γ_b	Yb Lu	Yb Lu Rb
																																felt	24.13	45.54	18.79	3.63	1.10	0.46	1 06	0017	0.15	0.15 75.29
																																35% Batch N	La	ç	PN	Sm	Eu	đ	Yb		Lu	Lu Rb
																																ich Melt	34.22	59.30	20.88	3.77	1.10	0.44	0.97		0.14	0.14 102.53
						50	.140	.100	.069	.052	.790	.060	.012	600'	.400	000	.010		1													20% Ba	La	ပိ	PN	Sm	Eu	đ	γb		Lu	Lu Rb
						Kfs Pla	0.10 6	0.06 0	0.04 6	0.04 0	4.60 0	0.06 0	0.04 0.	0.03 (2.40	5.10	0.02 (n Melt	47.42	74.28	22.55	3.86	1.10	0.42	0.92		0.13	0.13 135.12
						Quartz	0.018	5 0.014	0.016	5 0.017	0.080	8 0.019	0.017	3 0.011																		10% Batch	La	Ce	PN	Sm	Eu	Tb	Yb		Lu	Lu Rb
						nite Magnetite	0.22	0.20 0.20	0.30 0.30	0.010 0.35	0.20	0.022 0.21	0.11	0.18																		't	58.76	35.01	23.49	3.91	1.10	0.41	0.89		0.13	0.13 50.65
						feldspar Ilme	0.10	0.06	0.04	0.04	4.60	0.06	0.04	0.03	2.40	5.10	0.02															5% Batch Me	La	Ce	PN	Sm	Eu	Tb	Yb		Lu	Rb I
					987)	Amphibole K	4 0.20	3 0.30	0.80	0 1.10	3 1.30	0 2.00	0 1.70	0 1.50	0.22	0.36	0.45	0 1.90	efficient			~	0	2	6	2	~	~		_	-		_	2	0	+	0	_	~			
					ation (Martin, 1	ene Garnet	0.10 0.0	0.08	0.20 0.20).60 1.00	.00 09.0	.70 7.50	.60 21.00	0.60 21.00	0.03 0.00	0.0).35 0.5().03 16.00	ulk partition co	0.1372	0.22840	0.53428	0.79480	1.0096	1.5298.	2.0337	1.9537(0.17670	0.3976	0.3806	1.5750	atch Melt	68.6	93.0	24.10	3.9	1.10	0.4	0.8	Ċ	T.0	1.0
					melting calcula	Clinopyroxe	2 : 0	3 0	7 0	0	3 C	9 (9	8	0		0	0	Calculated b	La	Ce	PN	Sm	Eu	τb	$\mathbf{Y}\mathbf{b}$	Lu	Rb	Sr	Zr	Y	2% B	La	Ce	Nd	Sm	Eu	Tb	$\mathbf{Y}\mathbf{b}$. I	ΓΠ	Rb
Amphibole	K-Feldspar	Ilmenite	Magnetite	Quartz	lues for partial 1	Orthopyroxene	0.00	00.00	00.00	0.010	0.01	0.01	0.04	0.05	0.02	0.01	0.10	0.03																								
0.40	0.03	0.01	0.01	0.00	oleiitic KD Val	Olivine (0.0004	0.0005	0.0010	0.0013	0.0016	0.0016	0.0015	0.0015	0.0100	0.0140	0.4000	0.0015	rrce (S16)	10.60	22.70	13.10	3.15	11.11	0.62	1.77	0.24	35.00	514.00	51.00	19.00	ch Melt	72.66	96.12	24.31	3.95	1.10	0.41	0.87	0.12	11.0	189.26
40	33	-	-	0	Archean Th		La	Ce	Nd	Sm	Eu	đ	Υb	Γn	Rb	N.	Zr	Y	Basaltic Sot	La	Ce	PN	Sm	Eu	Tb	Υb	Lu	Rb	Sr	Z	Y	1% Bat	La	Ce	Nd	Sm	Eu	Tb	γb	Lu		Rb

Batch Melting Model To Generate S-59

																				nple 61	18.20	36.10	17.60	3.81	1.11	0.62	1.65	12.0	838.00	83.00	18.00
																				Sat	18.65	36.93	17.12	3.57	1.12	0.56	1.62	0.23	34.32	74.50	20.02
																				50% Melt	'a	e	p	в		م	<u>م</u>	a -	9.5	Ţ.	Y
																					Г	0	z	S	Щ	Ε;	×.		×σ	Z	
																				slt	4.15	5.49	8.86	3.72	1.13	0.54	1.57	77.0	2.69	6.45	0.34
																				6 Batch Me	6	4	-					ſ	- 8	œ	2
																				359	La	Ce	ΡN	Sm	Eu	f, i	ηX.		Sr Sr	Zr	Y
																					.26	.20	.98	68.	.13	.53	4. S	77.	10.	.97	.68
																				Batch Mel	34	59	20	ŝ	_	0,	_ 0	0 0	501 988	102	20
	10	8 6	90 90	12 80	60	88	10		1											20%	La	Ce	ΡN	Sm	Eu	f	χp	2 E	Sr Sr	Zr	Υ
	Plag 0.1.	5 0.0	4 0.0	6.0 0.0	0.0	5.0	2 0.0														~	•	•	~		0		~ 1	o 4	0	
	Kfs 0.10	0.0	0.0	0.0	0.0	5.1(0.02													atch Melt	47.53	74.09	22.69	4.0(1.1	0.52	1.51	77.0	51.7 č1 1117.54	118.00	20.91
	Quartz 0.018	0.014	0.017	0.019	0.011															10% B	La	Ce	ΡN	Sm	Eu	f	Υb	3 Z	S R	Zr	Υ
	Magnetite 0.22	0.26 0.30	0.35 0.26	0.28 0.18	0.18																										
	Ilmenite 0.005	0.006 0.008	0.010 0.007	0.022 0.077	0.100															h Melt	58.93	84.75	23.65	4.07	1.14	0.51	1.50	77.0	105.53	127.29	21.03
	C feldspar 0.10	0.06 0.04	0.04 4.60	0.06 0.04	0.03	5.10	0.02													5% Batcl	La	Ce	PN	Sm	Eu	f	Υ ^b	22	Sr 0	Zr	Υ
	mphibole 1 0.20	$0.30 \\ 0.80$	1.10	2.00 1.70	1.50	0.36	0.45	1.90	cient																						
	lartin, 1987) Garnet A 0.04	0.08 0.20	1.00 0.98	7.50 21.00	21.00	0.01	0.50	16.00	tition coeffic	0.13670	0.22932	0.53036	0.02454	1.22504	1.19054	1.11470	0.17244	0.36910	0.89850	elt	68.85	92.75	24.27	4.10	1.14	0.51	1.49	77.0	185.19 1247.78	133.61	21.10
	lculation (M /roxene 0.10	0.20 0.40	0.60	0.70 0.60	0.60	0.20	0.35	0.03	ed bulk part	ъ.	ē	P	Ξ;	η p	و م	'n	q ;		. ~	% Batch M	a.	e	p	в		م	٩	a -	9.5	Ľ	ć
ગ	l melting ca te Clinopy 02	03 07	10	119 149	58 22	77	00	30	Calculat	Г	0	2 0	όμ		Y	Γ	2 9			2	Г	0	Z	S	щ	Η;	× -		×σ	Z	
Jimopyroxer Garnet Amphibole K-Feldspar Ilmenite Magnetite Quartz	les for partia Drthopyroxen 0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0																							
0.55 0 0.01 0.03 0.03 0.03 0.01 0.01	tic KD Valu Dlivine C 0.0004	0.0005	0.0013	0.0016 0.0015	0.0015	0.0100	0.4000	0.0015	(S16)	10.60	22.70	13.10 2.15	CI.C	0.62	1.77	0.24	35.00	51.00	19.00	Melt	72.94	95.77	24.48	4.12	1.14	0.51	1.49	77.0	195.07 1266.23	135.85	21.12
0 - 7 3 <u>3</u> 8 - 5	ean Tholeii (La	Nd Ce	Sm Eu	ድ ይ	Lu	Sr	Zr	Y	ultic Source	La	c	PN	ын Б.,	n f	Yb	Lu	Rb Er	2r Zr	× ا	1% Batch N	La	Ce	PN	Sm	Ē	ff :	Yb	33	Sr	Zr	Y
	Arcl								Bas_{6}																						

-61
rate S
Gene
I To (
Mode
Ielting
Batch N

Residual mineralogy 0 0.00 Olivine 0 0.00 Orthopyroxene

%

Batch Melting Model To Generate Yana

APPENDIX C4

Fractional crystallisation modelling using partition coefficients

	Орх	Срх	Hbl	Plag	Bt
Sm	0.100	0.750	2.000	0.110	2.117
Th	0.050	0.010	0.150	0.010	0.997
Partition Co and Bt from	efficients taker Nash and Cree	n from Gill (ecraft (1985)	1981), Sm in	Hbl from Gr	een and Pearson (
Initial Comr	osition (S-46)				
Sm	4.09				
Th	6.90				
5% fractiona	al crystallisatio	n 4 1 4	2.00	1.00	2.04
Sm	4.28	4.14	3.89	4.28	3.86
Th	7.24	7.26	7.21	7.26	6.90
10% fraction	nal crystallisati	on			
Sm	4.50	4.20	3.68	4.49	3.64
Th	7.63	7.66	7.55	7.66	6.90
20% fraction	nal crystallisati	on			
Sm	5.00	4.32	3.27	4.99	3.19
Th	8.53	8.61	8.34	8.61	6.90
30% fraction	nal crystallisati	on			
Sm	5.64	4.47	2.86	5.62	2.75
Th	9.68	9.82	9.34	9.82	6.91
50% fraction	nal crystallisati	on			
Sm	7.63	4.86	2.05	7.58	1.89
Th	13.33	13.70	12.44	13.70	6.91

Fractional	Crystallisation	Modelling U	sing Partition	Coefficients